forked from tum-ens/urbs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcomp.py
259 lines (207 loc) · 8.82 KB
/
comp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import glob
import math
import matplotlib.gridspec as gridspec
import matplotlib.pyplot as plt
import matplotlib.ticker as tkr
import os
import pandas as pd
import urbs
import sys
# INIT
def get_most_recent_entry(search_dir):
""" Return most recently modified entry from given directory.
Args:
search_dir: an absolute or relative path to a directory
Returns:
The file/folder in search_dir that has the most recent 'modified'
datetime.
"""
entries = glob.glob(os.path.join(search_dir, "*"))
entries.sort(key=lambda x: os.path.getmtime(x))
return entries[-1]
def glob_result_files(folder_name):
""" Glob result spreadsheets from specified folder.
Args:
folder_name: an absolute or relative path to a directory
Returns:
list of filenames that match the pattern 'scenario_*.xlsx'
"""
glob_pattern = os.path.join(folder_name, 'scenario_*.xlsx')
result_files = sorted(glob.glob(glob_pattern))
return result_files
def deduplicate_legend(handles, labels):
""" Remove double entries from figure legend.
Args:
handles: list of legend entry handles
labels: list of legend entry labels
Returns:
(handles, labels) tuple of lists with duplicate labels removed
"""
new_handles = []
new_labels = []
for hdl, lbl in zip(handles, labels):
if lbl not in new_labels:
new_handles.append(hdl)
new_labels.append(lbl)
# also, sort both lists accordingly
new_labels, new_handles = (list(t) for t
in zip(*sorted(zip(new_labels, new_handles))))
return (new_handles, new_labels)
def group_hbar_plots(ax, group_size, inner_sep=None):
"""
Args:
ax: matplotlib axis
group_size (int): how many bars to group together
inner_sep (float): vertical spacing within group (optional)
"""
handles, labels = ax.get_legend_handles_labels()
bar_height = handles[0][0].get_height() # assumption: all bars identical
if not inner_sep:
inner_sep = 0.5 * (1 - bar_height)
for column, handle in enumerate(handles):
for row, patch in enumerate(handle.patches):
group_number, row_within_group = divmod(row, group_size)
group_offset = (group_number * group_size
+ 0.5 * (group_size - 1) * (1 - inner_sep)
- 0.5 * (group_size * bar_height))
patch.set_y(row_within_group * (bar_height + inner_sep)
+ group_offset)
def compare_scenarios(result_files, output_filename):
""" Create report sheet and plots for given report spreadsheets.
Args:
result_files: a list of spreadsheet filenames generated by urbs.report
output_filename: a spreadsheet filename that the comparison is to be
written to
Returns:
Nothing
To do:
Don't use report spreadsheets, instead load pickled problem
instances. This would make this function less fragile and dependent
on the output format of urbs.report().
"""
# derive list of scenario names for column labels/figure captions
scenario_names = [os.path.basename(rf) # drop folder names, keep filename
.replace('_', ' ') # replace _ with spaces
.replace('.xlsx', '') # drop file extension
.replace('scenario ', '') # drop 'scenario ' prefix
for rf in result_files]
# find base scenario and put at first position
try:
base_scenario = scenario_names.index('base')
result_files.append(result_files.pop(base_scenario))
scenario_names.append(scenario_names.pop(base_scenario))
except ValueError:
pass # do nothing if no base scenario is found
costs = [] # total costs by type and scenario
esums = [] # sum of energy produced by scenario
# READ
for rf in result_files:
with pd.ExcelFile(rf) as xls:
cost = xls.parse('Costs', index_col=[0])
esum = xls.parse('Commodity sums')
# repair broken MultiIndex in the first column
esum.reset_index(inplace=True)
esum.fillna(method='ffill', inplace=True)
esum.set_index(['level_0', 'level_1'], inplace=True)
costs.append(cost)
# extract sites and commodities from scenario
sitcom = [value.split('.') for value
in esum.columns.get_level_values(0)]
coms = set([com for sit, com in sitcom])
com_sums = pd.DataFrame()
# get site.commodity names
sit_com = esum.columns.get_level_values(0)
# sum each commodity (e.g. Elec, CO2)
for com in coms:
com_sum = pd.DataFrame(esum.loc[:, sit_com.str.contains(com)]
.sum(axis=1), columns=[com])
com_sums = pd.concat([com_sums, com_sum], axis=1)
esums.append(com_sums)
# merge everything into one DataFrame each
costs = pd.concat(costs, axis=1, keys=scenario_names)
esums = pd.concat(esums, axis=1, keys=scenario_names)
# ANALYSE
# drop redundant 'costs' column label
# make index name nicer for plot
# sort/transpose frame
# convert EUR/a to 1e9 EUR/a
costs.columns = costs.columns.droplevel(1)
costs.index.name = 'Cost type'
costs = costs.sort_index().transpose()
costs = costs / 1e9
spent = costs.loc[:, costs.sum() > 0]
earnt = costs.loc[:, costs.sum() < 0]
# extract created
# per commodity (e.g. 'Elec', 'CO2', 'Heat'...)
# make index name 'Commodity' nicer for plot
# drop all unused commodities and sort/transpose
# convert MWh to GWh
esums = esums.loc['Created']
esums.index.name = 'Commodity'
used_commodities = (esums.sum(axis=1) > 0)
esums = esums[used_commodities].sort_index().transpose()
esums = esums / 1e3
# PLOT
fig = plt.figure(figsize=(20, 8))
gs = gridspec.GridSpec(1, 2, width_ratios=[2, 3])
ax0 = plt.subplot(gs[0])
spent_colors = [urbs.to_color(ct) for ct in spent.columns]
bp0 = spent.plot(ax=ax0, kind='barh', stacked=True, color=spent_colors,
linewidth=0)
if not earnt.empty:
earnt_colors = [urbs.to_color(ct) for ct in earnt.columns]
bp0a = earnt.plot(ax=ax0, kind='barh', stacked=True,
color=earnt_colors, linewidth=0)
ax1 = plt.subplot(gs[1])
esums_colors = [urbs.to_color(commodity) for commodity in esums.columns]
bp1 = esums.plot(ax=ax1, kind='barh', stacked=True, color=esums_colors,
linewidth=0, width=.5)
# remove scenario names from second plot
group_hbar_plots(ax1, len(coms))
ax1.set_yticklabels(esums.index.get_level_values(1))
# make bar plot edges lighter
for bp in [bp0, bp1]:
for patch in bp.patches:
patch.set_edgecolor(urbs.to_color('Decoration'))
# set limits and ticks for both axes
for ax in [ax0, ax1]:
plt.setp(list(ax.spines.values()), color=urbs.to_color('Grid'))
ax.yaxis.grid(False)
ax.xaxis.grid(True, 'major', color=urbs.to_color('Grid'),
linestyle='-')
ax.xaxis.set_ticks_position('none')
ax.yaxis.set_ticks_position('none')
# group 1,000,000 with commas
group_thousands = tkr.FuncFormatter(lambda x,
pos: '{:0,d}'.format(int(x)))
ax.xaxis.set_major_formatter(group_thousands)
# legend
lg = ax.legend(frameon=False, loc='upper center',
ncol=4,
bbox_to_anchor=(0.5, 1.11))
plt.setp(lg.get_patches(), edgecolor=urbs.to_color('Decoration'),
linewidth=0)
ax0.set_xlabel('Total costs (billion EUR/a)')
if 'CO2' in coms:
ax1.set_xlabel('Total energy produced (GWh)\n Emitted CO2 (kt)')
else:
ax1.set_xlabel('Total energy produced (GWh)')
for ext in ['png', 'pdf']:
fig.savefig('{}.{}'.format(output_filename, ext),
bbox_inches='tight')
# REPORT
with pd.ExcelWriter('{}.{}'.format(output_filename, 'xlsx')) as writer:
costs.to_excel(writer, 'Costs')
esums.to_excel(writer, 'Energy sums')
if __name__ == '__main__':
directories = sys.argv[1:]
if not directories:
# get the directory of the supposedly last run
# and retrieve (glob) a list of all result spreadsheets from there
directories = [get_most_recent_entry('result')]
for directory in directories:
result_files = glob_result_files(directory)
# specify comparison result filename
# and run the comparison function
comp_filename = os.path.join(directory, 'comparison')
compare_scenarios(list(reversed(result_files)), comp_filename)