diff --git a/doc/examples.rst b/doc/examples.rst index 8664824..ed69da6 100644 --- a/doc/examples.rst +++ b/doc/examples.rst @@ -670,7 +670,7 @@ Then the neural network is created. Since we have a system with 3 inputs and 2 o .. code-block:: matlab - nn = [3 4 4 2]; + nn = [3 5 5 2]; dIn = [0]; dIntern=[]; dOut=[1]; diff --git a/matlab/examples/example_compair.m b/matlab/examples/example_compair.m index 83dd662..abece47 100644 --- a/matlab/examples/example_compair.m +++ b/matlab/examples/example_compair.m @@ -12,16 +12,16 @@ %% %Create NN -%create recurrent neural network with 1 input, 2 hidden layers with -%3 neurons each and 1 output +%create recurrent neural network with 3 inputs, 2 hidden layers with +%5 neurons each and 3 outputs %the NN uses the input data at timestep t-1 and t-2 %The NN has a recurrent connection with delay of 1,2 and 3 timesteps from the output % to the first layer (and no recurrent connection of the hidden layers) -nn = [3 4 4 2]; +nn = [3 5 5 2]; dIn = [0]; dIntern=[]; dOut=[1]; -net = CreateNN(nn,dIn,dIntern,dOut); %alternative: net = CreateNN([3,4,4,2],[0],[],[1]); +net = CreateNN(nn,dIn,dIntern,dOut); %alternative: net = CreateNN([3,5,5,2],[0],[],[1]); %% %Train with LM-Algorithm diff --git a/matlab/examples/example_narendra4.m b/matlab/examples/example_narendra4.m index 22576f2..5f73f5e 100644 --- a/matlab/examples/example_narendra4.m +++ b/matlab/examples/example_narendra4.m @@ -1,4 +1,4 @@ -%% +u%% %Read Example Data file = 'example_data.xlsx'; num = xlsread(file,'narendra4'); @@ -17,7 +17,7 @@ %the NN uses the input data at timestep t-1 and t-2 %The NN has a recurrent connection with delay of 1,2 and 3 timesteps from the output % to the first layer (and no recurrent connection of the hidden layers) -nn = [1 2 2 1]; +nn = [1 3 3 1]; dIn = [1,2]; dIntern=[]; dOut=[1,2,3]; diff --git a/matlab/examples/example_using_P0Y0_compair.m b/matlab/examples/example_using_P0Y0_compair.m index 954bad6..d805c7a 100644 --- a/matlab/examples/example_using_P0Y0_compair.m +++ b/matlab/examples/example_using_P0Y0_compair.m @@ -20,8 +20,8 @@ %% %Create NN -%create recurrent neural network with 1 input, 2 hidden layers with -%3 neurons each and 1 output +%create recurrent neural network with 3 inputs, 2 hidden layers with +%5 neurons each and 2 outputs %the NN uses the input data at timestep t-1 and t-2 %The NN has a recurrent connection with delay of 1,2 and 3 timesteps from the output % to the first layer (and no recurrent connection of the hidden layers) @@ -29,7 +29,7 @@ dIn = [0]; dIntern=[]; dOut=[1]; -net = CreateNN(nn,dIn,dIntern,dOut); %alternative: net = CreateNN([3,4,4,2],[0],[],[1]); +net = CreateNN(nn,dIn,dIntern,dOut); %alternative: net = CreateNN([3,5,5,2],[0],[],[1]); %% %Train with LM-Algorithm diff --git a/matlab/examples/example_using_P0Y0_narendra4.m b/matlab/examples/example_using_P0Y0_narendra4.m index 4d074fc..30becbf 100644 --- a/matlab/examples/example_using_P0Y0_narendra4.m +++ b/matlab/examples/example_using_P0Y0_narendra4.m @@ -25,7 +25,7 @@ %the NN uses the input data at timestep t-1 and t-2 %The NN has a recurrent connection with delay of 1,2 and 3 timesteps from the output % to the first layer (and no recurrent connection of the hidden layers) -nn = [1 2 2 1]; +nn = [1 3 3 1]; dIn = [1,2]; dIntern=[]; dOut=[1,2,3];