diff --git a/matlab/examples/loadNN.m b/matlab/examples/loadNN.m deleted file mode 100644 index bc7f966..0000000 --- a/matlab/examples/loadNN.m +++ /dev/null @@ -1,64 +0,0 @@ -function net = loadNN(filename) - %Load neural network object from file - % - % Args: - % filename: path to csv file to save neural network - % - % Returns: - % net: neural network object - - [~,~,rawData] = xlsread(filename); - - %read neural network structure nn - nn = str2num(rawData{2,1}); - - %read input delays dIn - if isnumeric(rawData{4,1}) - dIn = rawData{4,1}; - else - dIn = str2num(rawData{4,1}); - end - - %read iternal delays dIntern - if isnumeric(rawData{6,1}) - dIntern = rawData{6,1}; - elseif rawData{6,1}==',' - dIntern = []; - else - dIntern = str2num(rawData{6,1}); - end - - %read output delays dOut - if isnumeric(rawData{8,1}) - dOut = rawData{8,1}; - elseif rawData{8,1}==',' - dOut = []; - else - dOut = str2num(rawData{8,1}); - end - - %read factor for input data normalization normP - if isnumeric(rawData{10,1}) - normP = rawData{10,1}; - else - normP = str2num(rawData{10,1})'; - end - - %read factor for output data normalization normY - if isnumeric(rawData{12,1}) - normY = rawData{12,1}; - else - normY = str2num(rawData{12,1})'; - end - - %read weight vector w - w = csvread(filename,13,0); - - %Create neural network and assign loaded weights and factors - net = CreateNN(nn,dIn,dIntern,dOut); - net.normP = normP; - net.normY = normY; - net.w = w; - - -end \ No newline at end of file