forked from JWSoh/MZSR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
59 lines (41 loc) · 3.18 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
from ops import *
class Weights(object):
def __init__(self, scope=None):
self.weights={}
self.scope=scope
self.kernel_initializer=tf.variance_scaling_initializer()
self.build_CNN_params()
print('Initialize weights {}'.format(self.scope))
def build_CNN_params(self):
kernel_initializer=self.kernel_initializer
with tf.variable_scope(self.scope):
self.weights['conv1/w'] = tf.get_variable('conv1/kernel', [3, 3, 3, 64], initializer=kernel_initializer, dtype=tf.float32)
self.weights['conv1/b'] = tf.get_variable('conv1/bias',[64], dtype=tf.float32, initializer=tf.zeros_initializer())
self.weights['conv2/w'] = tf.get_variable('conv2/kernel', [3, 3, 64, 64], initializer=kernel_initializer, dtype=tf.float32)
self.weights['conv2/b'] = tf.get_variable('conv2/bias',[64], dtype=tf.float32, initializer=tf.zeros_initializer())
self.weights['conv3/w'] = tf.get_variable('conv3/kernel', [3, 3, 64, 64], initializer=kernel_initializer, dtype=tf.float32)
self.weights['conv3/b'] = tf.get_variable('conv3/bias',[64], dtype=tf.float32, initializer=tf.zeros_initializer())
self.weights['conv4/w'] = tf.get_variable('conv4/kernel', [3, 3, 64, 64], initializer=kernel_initializer, dtype=tf.float32)
self.weights['conv4/b'] = tf.get_variable('conv4/bias',[64], dtype=tf.float32, initializer=tf.zeros_initializer())
self.weights['conv5/w'] = tf.get_variable('conv5/kernel', [3, 3, 64, 64], initializer=kernel_initializer, dtype=tf.float32)
self.weights['conv5/b'] = tf.get_variable('conv5/bias',[64], dtype=tf.float32, initializer=tf.zeros_initializer())
self.weights['conv6/w'] = tf.get_variable('conv6/kernel', [3, 3, 64, 64], initializer=kernel_initializer, dtype=tf.float32)
self.weights['conv6/b'] = tf.get_variable('conv6/bias',[64], dtype=tf.float32, initializer=tf.zeros_initializer())
self.weights['conv7/w'] = tf.get_variable('conv7/kernel', [3, 3, 64, 64], initializer=kernel_initializer, dtype=tf.float32)
self.weights['conv7/b'] = tf.get_variable('conv7/bias',[64], dtype=tf.float32, initializer=tf.zeros_initializer())
self.weights['conv8/w'] = tf.get_variable('conv8/kernel', [3, 3, 64, 3], initializer=kernel_initializer, dtype=tf.float32)
self.weights['conv8/b'] = tf.get_variable('conv8/bias',[3], dtype=tf.float32, initializer=tf.zeros_initializer())
class MODEL(object):
def __init__(self, name):
self.name = name
print('Build Model {}'.format(self.name))
def forward(self, x, param):
self.input=x
self.param=param
with tf.variable_scope(self.name):
self.conv1 = conv2d(self.input, param['conv1/w'], param['conv1/b'], scope='conv1', activation='ReLU')
self.head = self.conv1
for idx in range(2,8):
self.head = conv2d(self.head, param['conv%d/w' %idx], param['conv%d/b' % idx], scope='conv%d' %idx, activation='ReLU')
self.out1 = conv2d(self.head, param['conv8/w'], param['conv8/b'], scope='conv8', activation=None)
self.output = tf.add(self.input, self.out1)