-
Notifications
You must be signed in to change notification settings - Fork 488
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
分布式节点部署,launch时指定卡有问题 #2710
Comments
都是在web上启动的 |
比较稳定的做法可能是通过 worker_ip 指定运行节点。 |
之前有别人出现过这种情况吗?有没有优化的办法?未来会不会有优化?感谢! |
This issue is stale because it has been open for 7 days with no activity. |
需要确认你指定的机器上有这个路径。 |
我们使用docker方式启动。确认路径正确。 并且我们测试了v0.16.3版本,单机部署方式没问题,集群模式就会出问题。
|
是注册的自定义模型? |
是的嘞。embedding使用的是“moka-ai/m3e-large”,rerank用的是“BAAI/bge-reranker-large”。都是从huggingface上下载到了本地。 |
自定义注册的时候应该和worker有关,有设置吗 |
模型注册信息如下:
启动时设置worker ip总是找不到容器中的模型。两个worker都测试无效。 |
cuda 12.2
python3.10
transformers 4.47.0
xinference version :1.0.1
start supervisor
conda activate XXX
export XINFERENCE_HOME=/data/xinference
nohup xinference-supervisor -H $IP_ADDR
#start worker
conda activate XXX
export XINFERENCE_HOME=/data/xinference
export XINFERENCE_ENDPOINT=$IP_ADDR
nohup xinference-worker -e "$IP_ADDR:$PORT" -H $IP_ADDR
我有三个节点,分别是4卡,2卡,4卡,启动顺序也是4卡,2卡,4卡
当我启动三个不同的模型时,第一个模型指定了4卡,正常启动,第二个模型启动时最多只能选择2卡,将2卡的节点占用之后才能在启动第三个模型时选择4卡并在4卡的节点上运行。
The text was updated successfully, but these errors were encountered: