Skip to content

Latest commit

 

History

History
84 lines (58 loc) · 4.85 KB

README.md

File metadata and controls

84 lines (58 loc) · 4.85 KB

Taylor-Lagrange Neural Ordinary Differential Equations

Code for the paper:

Franck Djeumou*, Cyrus Neary*, Eric Goubault, Sylvie Putot, and Ufuk Topcu. "Taylor-Lagrange Neural Ordinary Differential Equations: Toward Fast Training and Evaluation of Neural ODEs" Initial submission to IJCAI (2022). [arxiv] [bibtex]

*Equal Contribution

This package provides the following algorithms:

  • Learn a computationally cheap yet accurate solver (fixed-order Taylor-Lagrange expansion with learned midpoint) for evaluating Neural ordinary equations given sampled trajectories.

  • Learn both the underlying differential equation (and at the same time the cheap solver) of an unknown dynamcal system from sampled trajectories

Installation

This package requires jax to be installed: The choice of CPU or GPU version depends on the user but the CPU is installed by default along with the package. The package further requires dm-haiku for neural networks in jax and optax a gradient processing and optimization library for JAX. The following commands install everything that is required (except for the GPU version of JAX which must be installed manually):

pip install numpy matplotlib scipy tqdm pyyaml
cd TayLaNets/
python3 -m pip install -e . 

Examples

Stiff Dynamics example

To reproduce the experiments on the linear stiff dynamics, execute the set of command below.

# Generate the data set
cd TayLaNets/examples_taylanets/stiff_dynamics
python generate_sample.py --dt 0.01 # Do the same for the other time steps consider in the paper.

# Learn midpoint
cd TayLaNets/examples_taylanets/stiff_dynamics
python learn_midpoint.py --train_batch_size 500 --test_batch_size 1000 --lr_init 1e-5 --lr_end 1e-12 --test_freq 5000 --save_freq 10000 --n_steps 1 --nepochs 500 --w_decay 0 --grad_clip 0 --method tayla --order 1 --atol 1e-8 --rtol 1e-8 --trajfile data/stifflinear_dt0.01.pkl

# Learn the dynamics and the midpoint

python learn_dynamics.py --train_batch_size 500 --test_batch_size 250 --lr_init 1e-2 --lr_end 1e-4 --test_freq 1000 --save_freq 20000 --n_steps 1 --nepochs 100 --method tayla --atol 1e-8 --rtol 1e-8 --trajfile data/stifflinear_dt0.01.pkl --mid_freq_update 10 --pen_remainder 1e-2 --mid_lr_init 1e-4 --mid_lr_end 1e-12 

MNIST Classification

To train this model, Tensorflow and Tensorflow datasets must be installed as described here.. Then, run the following command to train the Taylor Lagrange Neural ordinary differential equation.

python tayla_mnist.py --train_batch_size 500 --test_batch_size 500 --lr_init 1e-2 --lr_end 1e-2 --test_freq 400 --save_freq 10000 --n_steps 2 --order 1 --pen_remainder 1e1 --nepochs 500 --method tayla --atol 1.4e-8 --rtol 1.4e-8 --grad_clip 0.001 --mid_freq_update 400 --mid_lr_init 1e-4 --mid_lr_end 1e-8 --grad_clip 0.001 --dur_ending_sched 50 --ending_lr_init 1e-4 --ending_lr_end 1e-4

FFJORD MINIBOONE for density estimation

To train this model, the data must be downloaded following instructions from gpapamak/maf and placed in data/. Only MINIBOONE is needed for experiments in the paper. The code in datasets/, copied from jacobjinkelly/easy-neural-ode, will create an interface for the MINIBOONE dataset once it's downloaded.

Then, you need to run the following command to learn a model for the tabular example.

python tayla_ffjord_tabular.py --train_batch_size 1000 --nepochs 400 --n_steps 8 --method tayla --lr_init 1e-3 --lr_end 1e-3 --w_decay 0.001 --grad_clip 0. --pen_remainder 5e1 --order 1 --mid_freq_update 100 --mid_lr_init 1e-4 --mid_lr_end 1e-7 --dur_ending_sched 150 --ending_lr_init 1e-5 --ending_lr_end 1e-5

Acknowledgements

The code in taylanets/ode.py, examples_taylanets/mnist/jinkelly_mnist, and examples_taylanets/ffjord_tabular/jinkelly_ffjord_tabular.py is modified from jacobjinkelly/easy-neural-ode and provide jax implementations of adaptive-stepping numerical solvers, comparisons with TayNODE and RNODE on classification task, and comparisons with TayNODE and RNODE on the density estimation task.

BibTeX

@misc{djeumou2022taylorlagrange,
      title={Taylor-Lagrange Neural Ordinary Differential Equations: Toward Fast Training and Evaluation of Neural ODEs}, 
      author={Franck Djeumou and Cyrus Neary and Eric Goubault and Sylvie Putot and Ufuk Topcu},
      year={2022},
      eprint={2201.05715},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2201.05715}
}