-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path3_SVD_transfer.py
executable file
·80 lines (64 loc) · 2.31 KB
/
3_SVD_transfer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import pickle
import numpy as np
import pandas as pd
# load
def initialize(M1, N1, N2, K):
X = np.random.rand(M1, K)
Y = np.random.rand(N1, K)
Z = np.random.rand(N2, K)
return X, Y, Z
def main_func(matrix1,matrix2,matrix_B):
# matrix1
# matrix2
# matrixB
M1, N1 = matrix1.shape
M2, N2 = matrix2.shape
K = 100
alpha = 0.5
beta = 1
X, Y, Z = initialize(M1, N1, N2, K)
max_iteration = 100
iteration = 0
ERt = ER(X, Y, Z, matrix1, matrix2, matrix_B, alpha, beta)
ER_history=0
while (abs(ER_history-ERt)>100 and iteration < max_iteration):
ER_history=ERt
print ERt * 1.0 / np.sum(matrix_B)
iteration += 1
grad_X, grad_Y, grad_Z = gradient_XYZ(X, Y, Z, matrix1, matrix2, matrix_B, alpha, beta)
gamma = 1.0
while (ER((X - gamma * grad_X), (Y - gamma * grad_Y), (Z - gamma * grad_Z), matrix1, matrix2, matrix_B, alpha,
beta) > ERt):
gamma /= 2.0
X = X - gamma * grad_X
Y = Y - gamma * grad_Y
Z = Z - gamma * grad_Z
ERt = ER(X, Y, Z, matrix1, matrix2, matrix_B, alpha, beta)
np.savez(open("data/3_SVD_XYZ.npz", "w"), X=X, Y=Y, Z=Z)
print "save ok"
print "END"
return X, Y, Z
def ER(X, Y, Z, matrix1, matrix2, matrix_B, alpha, beta):
result = 0
result += 0.5 * np.sum((matrix_B * (matrix1 - np.dot(X, Y.T))) ** 2)
result += alpha * 0.5 * np.sum((matrix2 - np.dot(X, Z.T)) ** 2)
result += beta * 0.5 * (np.sum(X ** 2) + np.sum(Y ** 2) + np.sum(Z ** 2))
return result
def gradient_XYZ(X, Y, Z, matrix1, matrix2, matrix_B, alpha, beta):
grad_X = np.dot(matrix_B * (np.dot(X, Y.T) - matrix1), Y)
grad_X += alpha * (np.dot((np.dot(X, Z.T) - matrix2), Z)) + beta * X
grad_Y = np.dot((matrix_B * (np.dot(X, Y.T) - matrix1)).T, X) + beta * Y
grad_Z = alpha * np.dot((np.dot(X, Z.T) - matrix2).T, X) + beta * Z
return grad_X, grad_Y, grad_Z
if __name__ == "__main__":
npzfile=np.load("data/3_rating_matrix.npz")
print "load finishing"
matrix1=npzfile['arr_0']
matrix_B=npzfile['arr_1']
matrix2=npzfile['arr_2']
M1, N1 = matrix1.shape
M2, N2 = matrix2.shape
K = 100
print N1,N2,M1
X, Y, Z = main_func(matrix1,matrix2,matrix_B)
np.savez(open("data/3_SVD_XYZ.npz", "w"),X=X,Y=Y,Z=Z)