-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathcbsi.m
130 lines (88 loc) · 2.85 KB
/
cbsi.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
function [phi_resp,phi_ref,Freq,Damp] = cbsi(Am,Bm,Cm,dc,dppair)
%
% Name: cbsi
%
% Usage: [phi_resp,phi_ref,Freq,Damp] = cbsi(Am,Bm,Cm,dc,dppair)
%
% Description:
% Uses CBSI-LS technique (See Alvin, 1993) to
% mass-normalize the measured modes
% from one or more driving point DOF pairs
%
% Input model must be in McMillan Normal Form
%
% dc are the continuous damped (complex) poles
% Version SWD960718
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This matlab source code was originally %
% developed as part of "DIAMOND" at %
% Los Alamos National Laboratory. It may %
% be copied, modified, and distributed in %
% any form, provided: %
% a) This notice accompanies the files and %
% appears near the top of all source %
% code files. %
% b) No payment or commercial services are %
% received in exchange for the code. %
% %
% Original copyright is reserved by the %
% Regents of the University of California, %
% in addition to Scott W. Doebling, Phillip %
% J. Cornwell, Erik G. Straser, and Charles %
% R. Farrar. %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
nx = size(Am,1);
nm = nx/2;
Vi = zeros(size(Am));
sig = real(dc);
omeg = imag(dc);
% Define the transformation
for i = 1:nm,
si = sig(i);
oi = omeg(i);
bi1 = Bm( (i-1)*2 + 1, :)';
bi2 = Bm( i*2, :)';
bi1dp = bi1(dppair(2));
bi2dp = bi2(dppair(2));
ci1 = Cm( : , (i-1)*2 + 1);
ci2 = Cm( : , i*2);
ci1dp = ci1(dppair(1));
ci2dp = ci2(dppair(1));
S11 = bi1' * bi1;
S12 = bi1' * bi2;
S22 = bi2' * bi2;
ad = 4 * si^2 * S22 - 4 * si * (si^2 + oi^2) * S12 +...
(si^2 + oi^2)^2 * S11;
bd = 2 * si * S22 - (si^2 + oi^2) * S12;
ae = bd * S22 - ad * S12;
be = S22^2 - ad*S11;
ce = S12 * S22 - bd*S11;
e = (- be + sqrt(be^2 - 4*ae*ce)) / 2*ae;
d = sqrt((ci1dp + e*(2*si*ci1dp + (si^2 + oi^2)*ci2dp))/...
((1+2*si*e+(si^2 + oi^2)*e^2)*(bi2dp+e*(2*si*bi2dp-(si^2 + oi^2)*bi1dp))));
Vi(((i-1)*2 + 1):(i*2),((i-1)*2 + 1):(i*2)) = ...
d * [ 1, e ; -e*(si^2 + oi^2), 1 + 2* si * e];
end
% Apply the transformation to the Mcmillan Normal Form model
V = inv(Vi);
Acb = Vi * Am * V;
Bcb = Vi * Bm;
Ccb = Cm * V;
%
% Form modal vectors and frequencies
%
dvec = [2:2:nm*2];
Freq = zeros(nm,1);
Damp = zeros(nm,1);
phi_resp = zeros(size(Cm,1),nm);
phi_ref = zeros(size(Bm,2),nm);
Ccb
pause
for i = 1:nm,
Freq(i) = sqrt(-Acb(dvec(i),dvec(i)-1))/2/pi;
Damp(i) = Acb(dvec(i),dvec(i))/2/(Freq(i) * 2 * pi);
phi_resp(:,i) = Ccb(:,dvec(i)-1);
phi_ref(:,i) = Bcb(dvec(i),:)';
end
return