-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_mnf.py
282 lines (218 loc) · 10 KB
/
train_mnf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import os
import json
import argparse
import torch
import random
import numpy as np
from datetime import datetime
from torch.utils.data import TensorDataset, DataLoader
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from dataloader.dataloader import CreateLoaders
from pickle import dump
import pkbar
import torch.optim as optim
from torch.optim import lr_scheduler
import torch.nn as nn
import pandas as pd
from pickle import load
from models.mnf_models import MNFNet_v3
import torch.nn.functional as F
from torch.utils.data import Subset
from loss_utils import BNN_Loss_Phys
def main(config,resume):
# Setup random seed
torch.manual_seed(config['seed'])
np.random.seed(config['seed'])
random.seed(config['seed'])
torch.cuda.manual_seed(config['seed'])
# Create experiment name
curr_date = datetime.now()
exp_name = config['name'] + '___' + curr_date.strftime('%b-%d-%Y___%H:%M:%S')
exp_name = exp_name[:-11]
print(exp_name)
# Create directory structure
output_folder = config['output']['dir']
os.mkdir(os.path.join(output_folder,exp_name))
with open(os.path.join(output_folder,exp_name,'config.json'),'w') as outfile:
json.dump(config, outfile)
# Load the dataset
print('Creating Loaders.')
pandas_df = pd.read_csv(config['dataset']['path_to_csv'],sep=',',index_col=None)
X = np.c_[
pandas_df['e_ecal_over_trk_ratio'].to_numpy(),
pandas_df['n_towers_40'].to_numpy(),
pandas_df['eta_pho_closest_to_ebeam'].to_numpy(),
pandas_df['e_pho_closest_to_ebeam'].to_numpy(),
pandas_df['dphi_pho_closest_to_ebeam'].to_numpy(),
pandas_df['obs_e_pz'].to_numpy(),
pandas_df['obs_e_e'].to_numpy(),
pandas_df['obs_hfs_pz'].to_numpy(),
pandas_df['obs_hfs_e'].to_numpy(),
pandas_df['rot_pt1'].to_numpy(),
pandas_df['rot_Empz1'].to_numpy(),
pandas_df['rot_pt2'].to_numpy(),
pandas_df['obs_pzbal'].to_numpy(),
pandas_df['obs_ptbal'].to_numpy(),
pandas_df['obs_dphi'].to_numpy(),
]
x_ = pandas_df['from_tlv_gen_x'].to_numpy()
y_ = pandas_df['from_tlv_gen_y'].to_numpy()
Q2_ = pandas_df['from_tlv_gen_Q2'].to_numpy()
log_S = np.log(Q2_/(x_*y_))
gen_log_Q2 = pandas_df['gen_log_Q2'].to_numpy()
#-- targets for regression
Y_r = np.c_[
pandas_df['gen_log_x'].to_numpy(),
pandas_df['gen_log_Q2'].to_numpy(),
pandas_df['gen_log_y'].to_numpy()
]
GY = pandas_df['from_tlv_gen_y'].to_numpy()
pth = os.path.join(output_folder,'%s-scalers' % config['name'])
print("Creating Scalers.")
scaler = MinMaxScaler(feature_range=(-1,1))
scaler.fit(X)
X = scaler.transform(X)
scalerY = MinMaxScaler(feature_range=(-1,1))
scalerY.fit(Y_r)
Y_r = scalerY.transform(Y_r)
print("X: ",X.max(),X.min())
print("Y: ",Y_r.max(),Y_r.min())
Y_r = np.append(Y_r,np.c_[log_S],axis=1)
Y_r = np.append(Y_r,np.c_[gen_log_Q2],axis=1)
try:
os.mkdir(pth)
except:
print('\n Dir %s-scalers already exists\n\n' % pth )
print('\n\n Saving the input and learning target scalers:\n')
print(' %s-scalers/input_scaler.pkl' % config['name'] )
print(' %s-scalers/target_scaler.pkl' % config['name'] )
dump( scaler, open(os.path.join(pth,'input_scaler.pkl') , 'wb'))
dump( scalerY, open(os.path.join(pth,'target_scaler.pkl') , 'wb'))
print("No files specified, using a predefined split of 70/15/15%")
full_dataset = TensorDataset(torch.tensor(X),torch.tensor(Y_r))
train_ids = list(np.load(os.path.join(config['dataset']['idx_path'],"train_indices.npy")))
val_ids = list(np.load(os.path.join(config['dataset']['idx_path'],"val_indices.npy")))
test_ids = list(np.load(os.path.join(config['dataset']['idx_path'],"test_indices.npy")))
train_dataset = Subset(full_dataset,train_ids)
val_dataset = Subset(full_dataset,val_ids)
test_dataset = Subset(full_dataset,test_ids)
history = {'train_loss':[],'val_loss':[],'lr':[]}
run_val = True
print("Training Size: {0}".format(len(train_dataset)))
print("Validation Size: {0}".format(len(val_dataset)))
print("Testing Size: {0}".format(len(test_dataset)))
train_loader,val_loader,test_loader = CreateLoaders(train_dataset,val_dataset,test_dataset,config)
# Create the model
net = MNFNet_v3()
t_params = sum(p.numel() for p in net.parameters())
print("Network Parameters: ",t_params)
net.to('cuda')
print(net)
# Optimizer
lr = float(config['optimizer']['lr'])
step_size = int(config['lr_scheduler']['step_size'])
gamma = float(config['lr_scheduler']['gamma'])
optimizer = optim.Adam(filter(lambda p: p.requires_grad, net.parameters()), lr=lr)
scheduler = lr_scheduler.StepLR(optimizer, step_size=step_size, gamma=gamma)
num_epochs=int(config['num_epochs'])
startEpoch = 0
global_step = 0
if resume:
print('=========== Resume training ==================:')
dict = torch.load(resume)
net.load_state_dict(dict['net_state_dict'])
optimizer.load_state_dict(dict['optimizer'])
scheduler.load_state_dict(dict['scheduler'])
startEpoch = dict['epoch']+1
history = dict['history']
global_step = dict['global_step']
print(' ... Start at epoch:',startEpoch)
print('=========== Optimizer ==================:')
print(' LR:', lr)
print(' step_size:', step_size)
print(' gamma:', gamma)
print(' num_epochs:', num_epochs)
print('')
# Train
# Define your loss function
loss_fn = None # Utilizes the predefined BNN loss
for epoch in range(startEpoch,num_epochs):
kbar = pkbar.Kbar(target=len(train_loader), epoch=epoch, num_epochs=num_epochs, width=20, always_stateful=False)
###################
## Training loop ##
###################
net.train()
running_loss = 0.0
for i, data in enumerate(train_loader):
inputs = data[0].to('cuda').float()
y = data[1][:,:3].to('cuda').float()
log_S_cond = data[1][:,-2].to('cuda').float()
log_Q2 = data[1][:,-1].to('cuda').float()
optimizer.zero_grad()
with torch.set_grad_enabled(True):
targets,log_devs2 = net(inputs)
rec_loss,huber,phys_loss = BNN_Loss_Phys(targets,log_devs2,y,scalerY,log_S_cond,log_Q2)
kl_div = config['optimizer']['KL_scale']*net.kl_div() / len(train_loader)
loss = rec_loss + kl_div + phys_loss
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.shape[0]
kbar.update(i, values=[("loss", loss.item()),("reg_loss",rec_loss.item()),("MSE",huber.item()),("phys",phys_loss.item()),("kl_loss",kl_div.item())])
global_step += 1
scheduler.step()
history['train_loss'].append(running_loss / len(train_loader.dataset))
history['lr'].append(scheduler.get_last_lr()[0])
######################
## validation phase ##
######################
if run_val:
net.eval()
val_loss = 0.0
val_rec_loss = 0.0
val_kl_div = 0.0
val_huber = 0.0
val_phys = 0.0
with torch.no_grad():
for i, data in enumerate(val_loader):
inputs = data[0].to('cuda').float()
y = data[1][:,:3].to('cuda').float()
log_S_cond = data[1][:,-2].to('cuda').float()
log_Q2 = data[1][:,-1].to('cuda').float()
targets,log_devs2 = net(inputs)
vr,vh,vp = BNN_Loss_Phys(targets,log_devs2,y,scalerY,log_S_cond,log_Q2)
val_rec_loss += vr
val_huber += vh
val_phys += vp
val_kl_div += config['optimizer']['KL_scale']*net.kl_div() / len(val_loader)
val_rec_loss = val_rec_loss/len(val_loader)
val_kl_div = val_kl_div / len(val_loader)
val_huber = val_huber / len(val_loader)
val_phys = val_phys / len(val_loader)
val_loss = val_rec_loss + val_kl_div + val_phys
val_loss = val_loss.cpu().numpy()
history['val_loss'].append(val_loss)
kbar.add(1, values=[("val_loss" ,val_loss),("val_reg_loss",val_rec_loss.item()),("val_MSE",val_huber.item()),("val_phys",val_phys.item()),("val_kl_loss",val_kl_div.item())])
name_output_file = config['name']+'_epoch{:02d}_val_loss_{:.6f}.pth'.format(epoch, val_loss)
else:
kbar.add(1,values=[('val_loss',0.)])
name_output_file = config['name']+'_epoch{:02d}_train_loss_{:.6f}.pth'.format(epoch, running_loss / len(train_loader.dataset))
filename = os.path.join(output_folder , exp_name , name_output_file)
checkpoint={}
checkpoint['net_state_dict'] = net.state_dict()
checkpoint['optimizer'] = optimizer.state_dict()
checkpoint['scheduler'] = scheduler.state_dict()
checkpoint['epoch'] = epoch
checkpoint['history'] = history
checkpoint['global_step'] = global_step
torch.save(checkpoint,filename)
print('')
if __name__=='__main__':
# PARSE THE ARGS
parser = argparse.ArgumentParser(description='Hackaton Training')
parser.add_argument('-c', '--config', default='config.json',type=str,
help='Path to the config file (default: config.json)')
parser.add_argument('-r', '--resume', default=None, type=str,
help='Path to the .pth model checkpoint to resume training')
args = parser.parse_args()
config = json.load(open(args.config))
main(config,args.resume)