forked from qedsoftware/phenospex-analysis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_analysis.R
74 lines (68 loc) · 2.79 KB
/
data_analysis.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
library(dplyr)
library(MESS)
library(mgcv)
library(grofit)
# estimate generalized additive model (gam) from mgcv library
PredictGrowthCurve <- function(data, x, y, startx, endx) {
data_fit <- data.frame(x = data[, x], y = data[, y])
fit <- gam(y~s(x), data = data_fit)
predictx <- seq(startx, endx, by = 8)
predicty <- predict(fit, data.frame(x = predictx))
predict_values <- data.frame(x = predictx, y = predicty)
return(predict_values)
}
GetPhenospexAUC <- function(planteye_data, property, mintime, maxtime, spline) {
dis_unit <- distinct(planteye_data, unit)
n_dis_unit <- length(dis_unit)
auc_temp <- rep(NA, n_dis_unit)
genotype <- rep(NA, n_dis_unit)
data_property <- planteye_data %>%
dplyr::select(timestamp, property, unit, genotype) %>%
mutate_(y = property)
i <- 1
for (b in dis_unit$unit) {
print(b)
data_property_unit <- data_property %>% filter(unit == b)
# align the prediction range for all the units
startx <- (mintime - as.numeric(data_property_unit$timestamp[1])) / 3600
endx <- (maxtime - as.numeric(data_property_unit$timestamp[1])) / 3600
data_property_unit$timestamp <-
as.numeric(data_property_unit$timestamp - data_property_unit$timestamp[1]) / 3600
# estimate smooth spline
if (spline) {
predict_values <- PredictGrowthCurve(data_property_unit,
"timestamp",
property,
startx,
endx)
}
else{
# estimate parametric growth curve models
result <- gcFitModel(data_property_unit$timestamp, data_property_unit$Height)
}
lentime <- (maxtime - mintime) / 3600
auc_temp[i] <- auc(predict_values$x, predict_values$y) - lentime * predict_values$y[1]
genotype[i] <- as.character(data_property_unit$genotype[1])
i <- i + 1
}
auc_data <- data.frame(unit = dis_unit, auc = auc_temp, genotype)
auc_data <- filter(auc_data, auc > 0)
return(auc_data)
}
PhenospexANOVA <- function(auc_data, properties) {
n_dis_prop <- length(properties)
mse_results <- rep(NA, n_dis_prop)
pvalues_results <- rep(NA, n_dis_prop)
k <- 1
for (property in properties) {
aov_genotype <- aov(auc_data[, property] ~ auc_data$genotype)
aov_results <- summary(aov_genotype)[[1]]
mse_results[k] <- aov_results[2, 3]
pvalues_results[k] <- aov_results[1, 5]
k <- k + 1
}
write.csv(data.frame(properties = properties,
mse_results = mse_results,
pvalues_results = pvalues_results),
"auc_anova_results.csv", row.names = FALSE)
}