-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsample.py
180 lines (173 loc) · 7.97 KB
/
sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
""" Runs simulation on current Solana stakes."""
import argparse
import numpy as np
def read_stakes(filename):
'''Reads stakes from file.'''
result = []
file = open(filename, "r", encoding="utf-8")
for line in file.readlines():
result.append(float(line))
file.close()
return result
def analyze_stakes(stakes, original_sum):
'''Return sum and number of validators with how/low stakes.'''
total = 0
high_stakes = 0
low_stakes = 0
high_stake_limit = original_sum * 0.003
low_stake_limit = original_sum * 0.00002
for stake in stakes:
total += stake
if stake > high_stake_limit:
high_stakes += 1
elif stake < low_stake_limit:
low_stakes += 1
return total, high_stakes, low_stakes
def select_stakes(stakes, target_stake_sum, candidates=None):
'''Selects stakes, the sum should no greater but as close as possible to target_stake_sum.'''
current_sum = 0
result = set()
if candidates is not None:
select_from = list(candidates)
select_from.sort()
else:
select_from = list(range(len(stakes)))
smallest_stake = stakes[select_from[0]]
biggest_candidate = stakes[select_from[-1]]
for _ in range(len(stakes)):
while select_from and stakes[select_from[-1]] > target_stake_sum - current_sum:
select_from.pop()
if not select_from:
break
index = np.random.choice(select_from)
stake = stakes[index]
current_sum += stake
result.add(index)
select_from.remove(index)
if stake == smallest_stake and select_from:
smallest_stake = stakes[select_from[0]]
if current_sum >= target_stake_sum or current_sum + smallest_stake > target_stake_sum:
break
return result, current_sum, biggest_candidate
def perform_simulation(stakes, non_conforming_indices, samples, rotation, rounds):
'''Performs simulation on stakes.'''
sum_stakes = sum(stakes)
count_stakes = len(stakes)
prob = np.array(stakes)/sum_stakes
mins = {}
maxs = {}
non_conforming_counts = [0, 0, 0] # over 1/3, 1/2, 2/3
states = {}
for i in range(count_stakes):
states[i] = 0
choices = []
serving = set()
rotate_number = 0
for round_index in range(rounds):
if round_index % 1000 == 0:
print(f"round {round_index}")
select_count = samples if len(choices) == 0 else rotate_number
available = []
available_prob = []
for i in range(count_stakes):
if states[i] == 0:
available.append(i)
available_prob.append(prob[i])
elif states[i] == 2:
states[i] = 0
total_available_prob = sum(available_prob)
choice_indices = np.random.choice(
available,
size=select_count,
replace=False,
p=np.array(available_prob)/total_available_prob)
for i in choice_indices:
states[i] = 1
serving.add(i)
choices.append(stakes[i])
stakes_stats = analyze_stakes(choices, sum_stakes)
for (j, value) in enumerate(stakes_stats):
mins[j] = min(mins.get(j, value), value)
maxs[j] = max(maxs.get(j, value), value)
non_conforming_ratio = sum(stakes[i] for i in serving if i in non_conforming_indices)
non_conforming_ratio = non_conforming_ratio/stakes_stats[0]
mins['non_conforming'] = min(
mins.get('non_conforming', non_conforming_ratio), non_conforming_ratio)
maxs['non_conforming'] = max(
maxs.get('non_conforming', non_conforming_ratio), non_conforming_ratio)
if non_conforming_ratio > 2/3:
non_conforming_counts[2] += 1
elif non_conforming_ratio > 1/2:
non_conforming_counts[1] += 1
elif non_conforming_ratio > 1/3:
non_conforming_counts[0] += 1
stakes_to_rotate = stakes_stats[0] * rotation / 100
remove_indices, removed_stakes, biggest_candidate = select_stakes(
stakes, stakes_to_rotate, serving)
biggest_candidate = biggest_candidate/stakes_stats[0]
mins['biggest_candidate'] = min(
mins.get('biggest_candidate', biggest_candidate), biggest_candidate)
maxs['biggest_candidate'] = max(
maxs.get('biggest_candidate', biggest_candidate), biggest_candidate)
if removed_stakes > stakes_to_rotate * 1.01:
print("Error: removed_stakes", removed_stakes, "stakes_to_rotate", stakes_to_rotate)
rotate_number = len(remove_indices)
mins['rotate_number'] = min(mins.get('rotate_number', rotate_number), rotate_number)
maxs['rotate_number'] = max(maxs.get('rotate_number', rotate_number), rotate_number)
for i in remove_indices:
states[i] = 2
serving.remove(i)
choices.remove(stakes[i])
return mins, maxs, non_conforming_counts
def interpolate_stakes(stakes, interpolate):
'''Interpolates stakes to specified number of validators.'''
count_stakes = len(stakes)
if count_stakes >= interpolate:
return stakes
x = np.linspace(0, count_stakes-1, num=count_stakes)
xnew = np.linspace(0, count_stakes-1, num=interpolate-count_stakes)
interpolated = np.interp(xnew, x, stakes)
result = stakes + interpolated.tolist()
result.sort()
return result
def main(args):
'''Main function.'''
print("args", args)
original_stakes = read_stakes("./validators_stakes_epoch_600")
original_stakes = interpolate_stakes(original_stakes, args.interpolate)
sum_original_stakes = sum(original_stakes)
non_conforming, _, _ = select_stakes(
original_stakes, sum(original_stakes) * args.non_conforming / 100)
_, original_highstake, original_lowstake = analyze_stakes(
original_stakes, sum_original_stakes)
print(f"total stake {sum_original_stakes} high_stakes (>0.3%) {original_highstake} "
f"low_stakes (<0.002%) {original_lowstake}")
print(f"random sampling {args.samples} out of {len(original_stakes)}, "
f"{args.rounds} rounds rotating {args.rotation}% stakes every round")
range_mins, range_maxs, non_conformings = perform_simulation(
original_stakes, non_conforming, args.samples, args.rotation, args.rounds)
print(f"total {range_mins[0]*100/sum_original_stakes:2.2f}% to "
f"{range_maxs[0]*100/sum_original_stakes:2.2f}% high_stakes(>0.3%) "
f"{range_mins[1]} to {range_maxs[1]} low_stakes(<0.002%%) "
f"{range_mins[2]} to {range_maxs[2]}")
print(f"non_conforming {range_mins['non_conforming']*100:2.2f}% to "
f"{range_maxs['non_conforming']*100:2.2f}%")
print(f"non_conforming (1/3 ~ 1/2) {non_conformings[0]}"
f"(1/2 ~ 2/3) {non_conformings[1]}"
f"(> 2/3) {non_conformings[2]}")
print(f"biggest_candidate {range_mins['biggest_candidate']*100:2.2f}% to "
f"{range_maxs['biggest_candidate']*100:2.2f}% rotate_number "
f"{range_mins['rotate_number']} to {range_maxs['rotate_number']}")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Perform simulation on Solana stakes.')
parser.add_argument('--samples', dest='samples', default=200, type=int,
help='Number of samples in each round (default to 200)')
parser.add_argument('--rounds', dest='rounds', default=1000, type=int,
help='Number of rounds in simulation (default to 1000)')
parser.add_argument('--rotation', dest='rotation', default=10, type=int,
help='Percentage of stake rotation on each round (default to 10)')
parser.add_argument('--non_conforming', dest='non_conforming', default=5, type=int,
help='Percent of non-conforming validators (default to 5)')
parser.add_argument('--interpolate', dest='interpolate', default=10000, type=int,
help='Interpolate to specified number of validators (default to 10000)')
main(parser.parse_args())