forked from LiberAI/NSpM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalyse.py
executable file
·212 lines (169 loc) · 7.29 KB
/
analyse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
#!/usr/bin/env python
"""
Neural SPARQL Machines - Analysis and validation of translated questions into queries.
'SPARQL as a Foreign Language' by Tommaso Soru and Edgard Marx et al., SEMANTiCS 2017
https://arxiv.org/abs/1708.07624
Version 1.0.0
"""
import argparse
import collections
import json
import os
import re
import sys
import urllib.request, urllib.parse, urllib.error
from pyparsing import ParseException
from rdflib.plugins.sparql import parser
from generator_utils import decode, extract_entities, extract_predicates
from functools import reduce
import importlib
def analyse( translation ):
result = {}
for test in TESTS:
result[test] = TESTS[test](translation)
everything_okay = all([result[test] for test in TESTS])
details['everything_okay'].update([everything_okay])
return result
def validate( translation ):
_, query = translation
# encode slash in prefix uri
entity_with_attribute = r'\w+:\w+\(<?\w+>?\)'
match = re.search(entity_with_attribute, query)
if match:
entity = match.group(0)
entity_encoded = re.sub(r'\(<?', r'\(', entity)
entity_encoded = re.sub(r'>?\)', r'\)', entity_encoded)
query = query.replace(entity, entity_encoded)
try:
parser.parseQuery(query)
except ParseException as exception:
print('{} in "{}", loc: {}'.format(exception.msg, exception.line, exception.loc))
details['parse_exception'].update([exception.msg])
return False
except Exception as exception:
msg = str(exception)
print('{}'.format(msg))
details['other_exception'].update([msg])
return False
else:
return True
def check_type( translation ):
target, generated = translation
target_type = extract_type(target)
return target_type == extract_type(generated) and target_type is not None
def extract_type( query ):
result_description = extract_result_description(query)
types = [r'select.*?count.*?where', 'select', 'ask', 'describe']
for query_type in types:
match = re.search(query_type, result_description, re.IGNORECASE)
if match:
return query_type
return None
def extract_result_description (sparqlQuery):
selectStatementPattern = r'(.*?)\swhere'
selectStatementMatch = re.search(selectStatementPattern, sparqlQuery, re.IGNORECASE)
if selectStatementMatch:
return selectStatementMatch.group(1)
return ''
def check_entities ( translation ):
target, generated = translation
entities = extract_entities(target)
if not entities:
return False
entities_detected = [entity in generated for entity in entities]
entities_with_occurence_count = ['{} [{}]'.format(entity, get_occurence_count(entity)) for entity in entities]
if all(entities_detected):
details['detected_entity'].update(entities_with_occurence_count)
return True
if any(entities_detected):
details['partly_detected_entities'].update([True])
details['undetected_entity'].update([entity_detected1[0] for entity_detected1 in [entity_detected for entity_detected in zip(entities_with_occurence_count, entities_detected) if not entity_detected[1]]])
return False
def check_predicates ( translation, ignore_prefix=True, ignore_case=True ):
strip_prefix = lambda entity : entity[entity.find(':') :]
target, generated = translation
predicates = extract_predicates(target)
if not predicates:
return False
if ignore_prefix:
predicates = list(map(strip_prefix, predicates))
if ignore_case:
predicates = list(map(str.lower, predicates))
generated = str.lower(generated)
predicates_detected = [predicate in generated for predicate in predicates]
if all(predicates_detected):
return True
if any(predicates_detected):
details['partly_detected_predicates'].update([True])
details['undetected_predicates'].update([predicate_detected2[0] for predicate_detected2 in [predicate_detected for predicate_detected in zip(predicates, predicates_detected) if not predicate_detected[1]]])
return False
def summarise( summary, current_evaluation ):
for test in TESTS:
test_result = current_evaluation[test]
summary[test].update([test_result])
return summary
def log_summary( summary, details, org_file, ask_output_file ):
print('\n\nSummary\n')
print('Analysis based on {} and {}'.format(org_file, ask_output_file))
for test in TESTS:
print('{:30}: {:6d} True / {:6d} False'.format(test, summary[test][True], summary[test][False]))
print('{:30}: {:6d} True / {:6d} False'.format('everything_okay', details['everything_okay'][True], details['everything_okay'][False]))
print('\n\nDetails\n')
for detail in details:
for key in details[detail]:
print('{:30}: {:6d} {}'.format(detail, details[detail][key], key))
def read( file_name ):
with open(file_name) as file:
questions = file.readlines()
return questions
def get_occurence_count ( entity ):
key = str(entity)
occurence_count = used_entities_counter[key] if key in used_entities_counter else 0
if not occurence_count:
key += '.'
occurence_count = used_entities_counter[key] if key in used_entities_counter else 0
if not occurence_count:
print('not found: {}'.format(entity))
return occurence_count
if __name__ == '__main__':
arg_parser = argparse.ArgumentParser()
requiredNamed = arg_parser.add_argument_group('required named arguments')
requiredNamed.add_argument('--target', dest='target', metavar='test.sparql', help='encoded sparql queries', required=True)
requiredNamed.add_argument('--generated', dest='generated', metavar='nmt/output.txt', help='direct (encoded) NSpM output', required=True)
args = arg_parser.parse_args()
targets_file = args.target
ask_output_file = args.generated
importlib.reload(sys)
sys.setdefaultencoding("utf-8")
TESTS = {
'valid_sparql': validate,
'correct_query_type': check_type,
'entities_detected': check_entities,
'predicates_detected': check_predicates
}
details = {
'parse_exception': collections.Counter(),
'other_exception': collections.Counter(),
'detected_entity': collections.Counter(),
'undetected_entity': collections.Counter(),
'partly_detected_entities': collections.Counter(),
'partly_detected_predicates': collections.Counter(),
'undetected_predicates': collections.Counter(),
'everything_okay': collections.Counter()
}
directory = os.path.dirname(ask_output_file)
used_entities_counter = json.load(open('{}/used_resources_normalized.json'.format(directory)))
encoded_targets = read(targets_file)
encoded_generated = read(ask_output_file)
if len(encoded_targets) != len(encoded_generated):
print('Some translations are missing')
sys.exit(1)
targets = list(map(decode, encoded_targets))
generated = list(map(decode, encoded_generated))
translations = list(zip(targets, generated))
evaluation = list(map(analyse, translations))
summary_obj = {}
for test in TESTS:
summary_obj[test] = collections.Counter()
summary = reduce(summarise, evaluation, summary_obj)
log_summary(summary, details, targets_file, ask_output_file)