forked from gt-frc/gt3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgtedge_LZ.py
165 lines (149 loc) · 6.84 KB
/
gtedge_LZ.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
from __future__ import division
import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import UnivariateSpline
from imp_rad import ImpRad
import sys
def calc_Lz_gtedge(T_ev_val):
if T_ev_val < 3.0:
T_ev_val = 3.0
if T_ev_val > 10000:
T_ev_val = 10000
if 3.0 <= T_ev_val < 10.0:
# dte = 0.1
Lz_val = 1 / (7.771844618017265E+17 +
59122888943831.57 * np.exp(T_ev_val) +
2.426539413730379E+20 * np.exp(-T_ev_val))
if 10.0 <=T_ev_val< 100.0:
# dte = 0.5
Lz_val = (T_ev_val*(-2.654182242083568E-20 +
T_ev_val*(2.458509606418251E-22 +
T_ev_val*(-9.488347829679447E-25 +
T_ev_val*(-1.316645200326443E-27 +
T_ev_val*(1.459022440553818E-29))))) +
1.639722967154732E-18 +
(1/T_ev_val)*(-6.374237210938420E-17 +
(1/T_ev_val)*(1.590289149116386E-15 +
(1/T_ev_val)*(-2.435345151607877E-14 +
(1/T_ev_val)*(2.038708041891294E-13 +
(1 / T_ev_val)*(-6.468093918696965E-13))))))
if 100.0 <=T_ev_val< 10000.0:
# if 100.0 <=T_ev_val< 120.0:
# dte = 0.5
# if 120.0 <=T_ev_val< 1000.0:
# dte = 5.0
# if 1000.0 <=T_ev_val< 10000.0:
# dte = 10.0
Lz_val = (T_ev_val*(5.333211787469455E-25+
T_ev_val*(-1.404553291126376E-28+
T_ev_val*(2.164576220631324E-32+
T_ev_val*(-1.691926173232754E-36+
T_ev_val*(5.202445752080436E-41)))))
- 5.770913821900679E-22 +
(1/T_ev_val) * (1.042550985018631E-18+
(1/T_ev_val)*(-3.134926132115641E-16+
(1/T_ev_val)*(8.184722721684790E-14+
(1/T_ev_val)*(-6.157523360890277E-12+
(1/T_ev_val)*(9.848433223044370E-11))))))
Te_ev_min = np.log10(3.0)
Te_ev_max = np.log10(10000.0)
Te_ev = np.logspace(Te_ev_min, Te_ev_max, 1000)
Lz = np.zeros(np.asarray(Te_ev).shape)
for i,T in enumerate(np.asarray(Te_ev)):
if T < 3.0:
T = 3.0
if T > 10000:
T = 10000
if 3.0 <= T < 10.0:
# dte = 0.1
Lz[i] = 1 / (7.771844618017265E+17 +
59122888943831.57 * np.exp(T) +
2.426539413730379E+20 * np.exp(-T))
if 10.0 <= T < 100.0:
# dte = 0.5
Lz[i] = (T*(-2.654182242083568E-20 +
T*(2.458509606418251E-22 +
T*(-9.488347829679447E-25 +
T*(-1.316645200326443E-27 +
T*(1.459022440553818E-29))))) +
1.639722967154732E-18 +
(1/T)*(-6.374237210938420E-17 +
(1/T)*(1.590289149116386E-15 +
(1/T)*(-2.435345151607877E-14 +
(1/T)*(2.038708041891294E-13 +
(1/T)*(-6.468093918696965E-13))))))
if 100.0 <= T < 10000.0:
# if 100.0 <=T< 120.0:
# dte = 0.5
# if 120.0 <=T< 1000.0:
# dte = 5.0
# if 1000.0 <=T< 10000.0:
# dte = 10.0
Lz[i] = (T * (5.333211787469455E-25 +
T * (-1.404553291126376E-28 +
T * (2.164576220631324E-32 +
T * (-1.691926173232754E-36 +
T * (5.202445752080436E-41)))))
- 5.770913821900679E-22 +
(1/T)*(1.042550985018631E-18 +
(1/T)*(-3.134926132115641E-16 +
(1/T)*(8.184722721684790E-14 +
(1/T)*(-6.157523360890277E-12 +
(1/T)*(9.848433223044370E-11))))))
#plt.loglog(Te_ev, UnivariateSpline(Te_ev*1.6021E-19, Lz, k=1, s=0).derivative()(Te_ev*1.6021E-19))
#plt.show()
dLzdT_val = UnivariateSpline(Te_ev*1.6021E-19, Lz, k=1, s=0).derivative()(T_ev_val*1.6021E-19)
print
print 'T_ev_val = ',T_ev_val
print 'Lz_val = ',Lz_val
print 'dLzdT_val = ',dLzdT_val
print
return Lz_val, dLzdT_val
def calc_Lz_gtedge_arr(Te_ev):
Lz = np.zeros(np.asarray(Te_ev).shape)
for i,T in enumerate(np.asarray(Te_ev)):
if T < 3.0:
T = 3.0
if T > 10000:
T = 10000
if 3.0 <= T < 10.0:
# dte = 0.1
Lz[i] = 1 / (7.771844618017265E+17 + 59122888943831.57 * np.exp(T) + 2.426539413730379E+20 * np.exp(-T))
if 10.0 <= T < 100.0:
# dte = 0.5
Lz[i] = T * (-2.654182242083568E-20 + T * (2.458509606418251E-22 + T * (
-9.488347829679447E-25+T * (-1.316645200326443E-27+T * (
1.459022440553818E-29))))) + 1.639722967154732E-18 + (1.0 / T) * (
-6.374237210938420E-17+(1.0 / T) * (1.590289149116386E-15+(1.0 / T) * (-
2.435345151607877E-14+(1.0 / T) * (2.038708041891294E-13+(1.0 / T) * (-
6.468093918696965E-13)))))
if 100.0 <= T < 10000.0:
# if 100.0 <= T < 120.0:
# dte = 0.5
# if 120.0 <= T < 1000.0:
# dte = 5.0
# if 1000.0 <= T < 10000.0:
# dte = 10.0
Lz[i] = T * (5.333211787469455E-25 + T * (-1.404553291126376E-28 + T * (
2.164576220631324E-32+T * (-1.691926173232754E-36+T * (
5.202445752080436E-41))))) -5.770913821900679E-22 + (1.0 / T) * (
1.042550985018631E-18+(1.0 / T) * (-3.134926132115641E-16+(1.0 / T) * (
8.184722721684790E-14+(1.0 / T) * (-6.157523360890277E-12+(1.0 / T) * (
9.848433223044370E-11)))))
dLzdT = UnivariateSpline(Te_ev*1.6021E-19, Lz, k=1, s=0).derivative()(Te_ev*1.6021E-19)
return Lz, dLzdT
if __name__ == '__main__':
Te_ev_min = np.log10(3.0)
Te_ev_max = np.log10(10000.0)
Te_ev = np.logspace(Te_ev_min, Te_ev_max,1000)
Lz, dLzdT = calc_Lz_gtedge_arr(Te_ev)
plt.loglog(Te_ev, Lz*1E-13, label='gtedge')
#plt.loglog(Te_ev, dLzdT*1E-13, label='gtedge')
C_6 = ImpRad(z=6)
Te_kev = Te_ev *1E-3
Lz_gt3 = C_6.Lz(np.log10(0.002), np.log10(1E-7), np.log10(Te_kev))
dLzdT_gt3 = C_6.dLzdT(np.log10(0.002), np.log10(1E-7), np.log10(Te_kev))
plt.loglog(Te_ev, Lz_gt3,label='gt3')
#plt.loglog(Te_ev, dLzdT_gt3,label='gt3')
plt.legend()
plt.show()