-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathdata_prep.py
147 lines (104 loc) · 3.92 KB
/
data_prep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
#!/usr/bin/env python
# coding: utf-8
import warnings
import os
from pathlib import Path
import shutil
import requests, zipfile, io
import sys
sys.path.append(os.path.join(os.getcwd(), 'utils'))
def create_val_img_folder(dataset_dir):
'''
This method is responsible for separating validation images into separate sub folders, so that
Pytorch's ImageFolder can be used to prepare the dataloaders for the test set
'''
#validation directory
val_dir = dataset_dir
img_dir = os.path.join(val_dir, 'images')
#Open the file to read off the labels for the different images in the folder
fp = open(os.path.join(val_dir, 'val_annotations.txt'), 'r')
data = fp.readlines()
#Create a dictionary to store this information
val_img_dict = {}
for line in data:
words = line.split('\t')
val_img_dict[words[0]] = words[1]
fp.close()
#Create a folder if not present and move these images into proper folders
for img, folder in val_img_dict.items():
newpath = (os.path.join(val_dir, folder))
#Create this directory if this does not exist
if not os.path.exists(newpath):
os.makedirs(newpath)
#Shift these images into the folder
if os.path.exists(os.path.join(img_dir, img)):
os.rename(os.path.join(img_dir, img), os.path.join(newpath, img))
shutil.rmtree(os.path.join(val_dir, 'images'))
os.remove(os.path.join(val_dir, 'val_annotations.txt'))
def convert_tiny_imagenet(path):
"""
Called for train/val/test
"""
path = Path(path)
#Delete the file (bounding boxes coordinates et al)
if not os.path.isdir(path):
os.remove(path)
return
#Execute in the case of a directory
for directory in os.listdir(path):
if (path.name == 'train'):
path_to_dir = os.path.join(path, directory)
dest_path = path_to_dir
for file in os.listdir(os.path.join(path_to_dir, 'images')):
shutil.move(path_to_dir + "/" + "images" + "/" + file, dest_path + "/" + file)
os.rmdir(path_to_dir + "/" + "images")
for file in os.listdir(path_to_dir):
if file.endswith('.txt'):
os.remove(path_to_dir + "/" + file)
elif (path.name == 'val'):
if(os.path.isdir(os.path.join(path, directory))):
create_val_img_folder(path)
else:
if os.path.isdir(path):
shutil.rmtree(path)
else:
os.remove(path)
def convert_to_tasks(path, number_of_tasks):
"""
This function converts the dataset into 4 tasks with 50 classes each. Each Task has a seperate
"training" and "test" folders for carrying out this evaluation function
"""
source_train_path = os.path.join(path, "tiny-imagenet-200", "train")
source_test_path = os.path.join(path, "tiny-imagenet-200", "val")
list_dir_train = os.listdir(source_train_path)
list_dir_test = os.listdir(source_test_path)
for i in range(number_of_tasks):
#Create a task directory
target_path = os.path.join(path, "Task_" + str(i+1))
os.mkdir(target_path)
#Create a train and a test directory
target_path_train = os.path.join(target_path, "train")
target_path_test = os.path.join(target_path, "test")
os.mkdir(target_path_train)
os.mkdir(target_path_test)
for i in range(50):
a = list_dir_train.pop(0)
b = list_dir_test.pop(0)
shutil.move(os.path.join(source_train_path, a), os.path.join(target_path_train, a))
shutil.move(os.path.join(source_test_path, b), os.path.join(target_path_test, b))
shutil.rmtree(os.path.join(path, 'tiny-imagenet-200'))
#Create the Data directory
path_to_file = os.getcwd() + "/Data"
os.mkdir(path_to_file)
#Code to download the dataset to the folder
zip_file_url = 'http://cs231n.stanford.edu/tiny-imagenet-200.zip'
r = requests.get(zip_file_url)
with zipfile.ZipFile(io.BytesIO(r.content), 'r') as zip_ref:
zip_ref.extractall(path_to_file)
path_to_dataset = path_to_file + "/tiny-imagenet-200"
#Prep the Data now
file_list = ['train', 'test', 'val', 'wnids.txt', 'words.txt']
for file in file_list:
convert_tiny_imagenet(path_to_dataset + "/" + file)
#Divide the dataset into 4 tasks
convert_to_tasks(path_to_file, 4)