From 031b87cd3e5ed03792aa8756417c2ec78dcb8107 Mon Sep 17 00:00:00 2001 From: wannabeOG Date: Mon, 25 Nov 2019 14:31:28 +0930 Subject: [PATCH] Fix the oversight, wherein the feature extractor had not been initialized whilst testing the autoencoders --- test_models.py | 40 +++++++++++++++++++++++++--------------- 1 file changed, 25 insertions(+), 15 deletions(-) diff --git a/test_models.py b/test_models.py index 05688cb..e283ab7 100644 --- a/test_models.py +++ b/test_models.py @@ -22,6 +22,7 @@ import argparse import numpy as np from random import shuffle +import os import copy from autoencoder import * @@ -38,13 +39,14 @@ parser = argparse.ArgumentParser(description='Test file') #parser.add_argument('--task_number', default=1, type=int, help='Select the task you want to test out the architecture; choose from 1-4') parser.add_argument('--use_gpu', default=False, type=bool, help = 'Set the flag if you wish to use the GPU') - +parser.add_argument('--batch_size', default=16, type=int, help='Batch size you want to use whilst testing the model') args = parser.parse_args() use_gpu = args.use_gpu + #randomly shuffle the tasks in the sequence task_number_list = [x for x in range(1, 10)] -shuffle(task_number) +shuffle(task_number_list) #transformations for the test data @@ -65,12 +67,10 @@ ]) } - -#create the results.txt file -with open("results.txt", "w") as myfile: - myfile.write() - myfile.close() - +#set the device to be used and initialize the feature extractor to feed the data into the autoencoder +device = torch.device("cuda:0" if use_gpu else "cpu") +feature_extractor = Alexnet_FE(models.alexnet(pretrained=True)) +feature_extractor.to(device) for task_number in task_number_list: @@ -91,14 +91,14 @@ image_folder = datasets.ImageFolder(os.path.join(path_task, 'test'), transform = data_transforms_mnist['test']) dset_size = len(image_folder) - device = torch.device("cuda:0" if use_gpu else "cpu") - + dset_loaders = torch.utils.data.DataLoader(image_folder, batch_size = batch_size, shuffle=True, num_workers=4) best_loss = 99999999999 model_number = 0 + #Load autoencoder models for tasks 1-4; need to select the best performing autoencoder model for ae_number in range(1, 10): ae_path = os.path.join(encoder_path, "autoencoder_" + str(ae_number)) @@ -122,12 +122,19 @@ else: input_data = Variable(input_data) - preds = model(input_data) - loss = encoder_criterion(preds, input_data) + + #get the input to the autoencoder from the conv backbone of the Alexnet + input_to_ae = feature_extractor(input_data) + input_to_ae = input_to_ae.view(input_to_ae.size(0), -1) + #get the outputs from the model + preds = model(input_to_ae) + loss = encoder_criterion(preds, input_to_ae) + del preds del input_data - + del input_to_ae + running_loss = running_loss + loss.item() model_loss = running_loss/dset_size @@ -146,15 +153,17 @@ print ("Incorrect routing, wrong model has been selected") - trained_model_path = os.path.join(model_path, "model_" + model_number) + #Load the expert that has been found by this procedure into memory + trained_model_path = os.path.join(model_path, "model_" + str(model_number)) + #Get the number of classes that this expert was exposed to file_name = os.path.join(trained_model_path, "classes.txt") file_object = open(file_name, 'r') num_of_classes = file_object.read() file_object.close() - num_of_classes = int(num_of_classes_old) + num_of_classes = int(num_of_classes) model = GeneralModelClass(num_of_classes) model.load_state_dict(torch.load(os.path.join(trained_model_path, 'best_performing_model.pth'))) @@ -193,6 +202,7 @@ model_loss = running_loss/dset_size model_accuracy = running_corrects.double()/dset_size + #Store the results into a file with open("results.txt", "a") as myfile: myfile.write("\n{}: {}".format(task_number, model_accuracy*100)) myfile.close()