-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathconfig.py
82 lines (56 loc) · 1.89 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
#!/usr/bin/env python
# @Time : 2020/7/8 14:41
# @Author : wb
# @File : config.py
'''
配置文件
包括文件配置
模型参数等
'''
import os
import warnings
class Config(object):
env = 'default' # visdom 环境
model = 'CWRUcnn' # 使用的模型,名字必须与models/__init__.py中的名字一致
data_root = 'data'
mat_root = 'raw_data' # mat数据文件根目录
list_filename = 'annotations_4.txt' # mat文件的文件列表
h5filename = 'DE_3_4.h5'
feature_filename = 'data/DE_feature_0_10.h5'
train_data_root = 'data/DE_0_10.h5'
val_data_root = 'data/DE_0_10.h5'
test_data_root = 'data/DE_0_10.h5'
dim = 400 # 数据的维度
train_fraction = 0.8 # 训练集所占的占比
split_num = 2
category = 10 # 类别数量
batch_size = 32 # batch size
use_gpu = True # user GPU or not
print_freq = 20 # print info every N batch
device = 'cuda:0'
print_every = 100
debug_file = '/tmp/debug' # if os.path.exists(debug_file): enter ipdb
result_file = './results/confuse_matrix_rate.xlsx'
load_model_path = './checkpoints/CWRUcnn_0325_21_00_40.pth'
max_epoch = 20
lr = 0.001 # initial learning rate
lr_decay = 0.99 # when val_loss increase, lr = lr*lr_decay
lr_decay_iters = 1 # 每一轮都减少lr
weight_decay = 1e-4 # 损失函数
# def parse(self, kwargs):
# '''
# 通过命令行的方式修改默认的参数
# 根据字典kwargs 更新 config参数
# '''
# for k, v in kwargs.iteritems():
# if not hasattr(self, k):
# warnings.warn("Warning: opt has not attribut %s" % k)
# setattr(self, k, v)
#
# print('user config:')
# for k, v in self.__class__.__dict__.iteritems():
# if not k.startswith('__'):
# print(k, getattr(self, k))
# Config.parse = parse
opt = Config()
# opt.parse = parse