diff --git a/index.html b/index.html index 0fdbf066c94f..7bc7797ead80 100644 --- a/index.html +++ b/index.html @@ -1 +1 @@ - Wadduwage Lab for Differentiable Microscopy (𝜕𝜇)

Wadduwage Lab for Differentiable Microscopy (𝜕𝜇)

wadduwage@fas.harvard.edu, twitter | @nawodya

In Wadduwage Lab, we work on novel computational microscopy solutions that can measure biological systems at their most information rich form, with minimum redundancy.

𝜕𝜇 – Differentiable Microscopy - With applications ranging from, rare cellular event detection to drug screening, high content imaging provides biomedically important morphological features of cells or tissues via high speed acquisition hardware and fast image processing algorithms. Despite significant advances in faster and more multiplexed imaging sensors, the imaging throughput is currently limited by the speed of electronics hardware. In Wadduwage Lab we use an orthogonal approach, termed differential microscopy (𝜕𝜇), to improve the imaging throughput beyond existing electronic hardware bottleneck. The rationale for 𝜕𝜇 is that low-dimensional compressed representations of image signals exists and can be found through learning-based techniques; instruments can thus be designed to perform measurements on the lower dimensional compressed representation, improving the throughput by the factor of compression. To achieve this, 𝜕𝜇 models the front-end optics, the back-end image -reconstruction and -processing algorithms together as a differentiable model of learnable parameters.

selected publications

  1. Chip-Based Resonance Raman Spectroscopy Using Tantalum Pentoxide Waveguides
    David A. Coucheron, Dushan N. Wadduwage, G. Senthil Murugan, and 2 more authors
    IEEE Photonics Technology Letters 2019
  2. De-scattering with Excitation Patterning enables rapid wide-field imaging through scattering media
    Cheng Zheng, Jong Kang Park, Murat Yildirim, and 5 more authors
    Science Advances 2021
  3. Differentiable microscopy (∂μ) for high-throughput imaging cytometry
    Dushan N. Wadduwage, and Udith Haputhanthri
    2021
  4. Differentiable Microscopy Designs an All Optical Quantitative Phase Microscope
    Kithmini Herath, Udith Haputhanthri, Ramith Hettiarachchi, and 5 more authors
    arXiv 2022
  5. From Hours to Seconds: Towards 100x Faster Quantitative Phase Imaging via Differentiable Microscopy
    Udith Haputhanthri, Kithmini Herath, Ramith Hettiarachchi, and 5 more authors
    arXiv 2022
\ No newline at end of file + Wadduwage Lab for Differentiable Microscopy (𝜕𝜇)

Wadduwage Lab for Differentiable Microscopy (𝜕𝜇)

wadduwage@fas.harvard.edu, twitter | @nawodya

In Wadduwage Lab, we work on novel computational microscopy solutions that can measure biological systems at their most information rich form, with minimum redundancy.

𝜕𝜇 – Differentiable Microscopy - With applications ranging from, rare cellular event detection to drug screening, high content imaging provides biomedically important morphological features of cells or tissues via high speed acquisition hardware and fast image processing algorithms. Despite significant advances in faster and more multiplexed imaging sensors, the imaging throughput is currently limited by the speed of electronics hardware. In Wadduwage Lab we use an orthogonal approach, termed differential microscopy (𝜕𝜇), to improve the imaging throughput beyond existing electronic hardware bottleneck. The rationale for 𝜕𝜇 is that low-dimensional compressed representations of image signals exists and can be found through learning-based techniques; instruments can thus be designed to perform measurements on the lower dimensional compressed representation, improving the throughput by the factor of compression. To achieve this, 𝜕𝜇 models the front-end optics, the back-end image -reconstruction and -processing algorithms together as a differentiable model of learnable parameters.

selected publications

  1. Chip-Based Resonance Raman Spectroscopy Using Tantalum Pentoxide Waveguides
    David A. Coucheron, Dushan N. Wadduwage, G. Senthil Murugan, and 2 more authors
    IEEE Photonics Technology Letters 2019
  2. De-scattering with Excitation Patterning enables rapid wide-field imaging through scattering media
    Cheng Zheng, Jong Kang Park, Murat Yildirim, and 5 more authors
    Science Advances 2021
  3. Differentiable microscopy (∂μ) for high-throughput imaging cytometry
    Dushan N. Wadduwage, and Udith Haputhanthri
    2021
  4. Differentiable Microscopy Designs an All Optical Quantitative Phase Microscope
    Kithmini Herath, Udith Haputhanthri, Ramith Hettiarachchi, and 5 more authors
    arXiv 2022
  5. From Hours to Seconds: Towards 100x Faster Quantitative Phase Imaging via Differentiable Microscopy
    Udith Haputhanthri, Kithmini Herath, Ramith Hettiarachchi, and 5 more authors
    arXiv 2022