-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathhmm.py
202 lines (164 loc) · 6.48 KB
/
hmm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
"""
Implementation of HMMs
We take the following view:
* a [probabilistic model] = a [class]
* an [inference operation] = a [public member function]
* [inference operation] includes [partition / marginal / argmax / sampling]
* an [inference algorithm] = a [private member function]
For the HMM model, we have the following correspondance:
inference operation inference algorithm
* partition <---> forward
* marginal <---> forward-backward
* max <---> viterbi
* argmax <---> viterbi-backtracking
* sampling <---> ancestral sampling
* conditional sampling <---> forward-filtering backward-sampling
"""
import numpy as np
from scipy.special import logsumexp
class HMM(object):
def __init__(self, initial, transition, emission):
"""
Args:
initial: size=[num_state]
transition: size=[num_state, num_state] from state -> to state
emission: size=[num_observation, num_state]
"""
self.initial = initial
self.transition = transition
self.emission = emission
self.num_state = transition.shape[0]
# assume the end state is the last state
# self.end_state = self.num_state - 1
return
def _forward(self, x):
"""Forward algorithm for computing the alpha and the partition,
implemented in the log space
Args:
x: size=[max_len]
Returns:
alpha: size=[max_len, num_state]
Z: float
"""
T = len(x)
N = self.num_state
alpha = np.zeros((T, N))
alpha[0] = self.emission[x[0]] + self.initial
for t in range(1, T):
emission_t = self.emission[x[t]]
alpha[t] = logsumexp(alpha[t - 1].reshape(N, 1) +
self.transition +
emission_t.reshape(1, N)
, axis=0)
Z = logsumexp(alpha[T - 1], axis=0)
return alpha, Z
def _backward(self, x):
"""Backward algorithm for computing the beta and the marginals,
implemented in the log space,
could be replaced by automatic differentiation
Args:
x: size=[max_len]
Returns:
beta: size=[max_len, num_state]
"""
T = len(x)
N = self.num_state
beta = np.zeros((T, N))
# t = [T - 2, T - 3 ,..., 0]
for t in range(T - 2, -1, -1):
emission_t_1 = self.emission[x[t + 1]]
beta[t] = logsumexp(beta[t + 1].reshape(1, N) +
self.transition +
emission_t_1.reshape(1, N),
axis=1)
return beta
def _viterbi(self, x):
"""Viterbi algorithm with back-tracking for computing the most probable
latent state sequence.
Args:
x: size=[max_len]
Returns:
max_z: size=[max_len]
max_p: float
"""
T = len(x)
N = self.num_state
max_s = np.zeros((T, N))
max_ptr = np.zeros((T, N)) # look up table
max_s[0] = self.initial + self.emission[x[0]]
for t in range(1, T):
emission_t = self.emission[x[t]]
log_phi_t = self.transition + emission_t.reshape(1, N)
max_s[t] = np.max(max_s[t-1].reshape(N, 1) + log_phi_t, axis=0)
max_ptr[t] = np.argmax(max_s[t-1].reshape(N, 1) + log_phi_t, axis=0)
# max_p = np.max(max_s[T - 1] + self.transition[:, self.end_state])
max_p = np.max(max_s[T - 1])
# backtracking
max_z = np.zeros(T).astype(int)
# max_z[T - 1] = np.argmax(max_s[T - 1] + self.transition[:, self.end_state])
max_z[T - 1] = np.argmax(max_s[T - 1])
for t in range(T - 2, -1, -1):
# print(t + 1)
# print(max_z[t + 1])
max_z[t] = max_ptr[t + 1, max_z[t + 1]]
return max_z, max_p
def partition(self, x):
"""Log partition the of HMM
Args:
x: size=[max_len]
Returns:
log_z: float
"""
_, log_z = self._forward(x)
return log_z
def marginal(self, x):
"""Marginal distribution of the latent sequences given the observation x
Args:
x: size=[max_len]
Returns:
node_marginal, size=[max_len, num_states] # p(h_t | x)
edge_marginal, size=[max_len - 1, num_states, num_states] p(h_t, h_{t + 1} | x)
"""
alpha, log_px = self._forward(x)
beta = self._backward(x)
node_marginal = alpha + beta - log_px
T = alpha.shape[0]
N = alpha.shape[1]
emission = self.emission[x] # size = [T, num_state]
# log edge marginal probability at step t from state i to state j is a T * N * N tensor
# log p(t, i, j) = alpha(t, i) + transition(i, j) + emission(t + 1, j) + beta(t, j) - Z
if(T >= 2):
edge_marginal = alpha[:-1].reshape(T - 1, N, 1) +\
self.transition.reshape(1, N, N) +\
emission[1:].reshape(T - 1, 1, N) +\
beta[1:].reshape(T - 1, 1, N) - log_px
else: edge_marginal = None
return alpha, beta, log_px, node_marginal, edge_marginal
def argmax(self, x):
"""Most probable latent sequence given the observation x
Args:
x: size=[max_len]
Returns:
marginal: size=[batch, max_len, num_state]
"""
max_z, max_log_prob = self._viterbi(x)
return max_z, max_log_prob
def log_prob(self, x):
"""Log probability of a given pair of observed x and latent z
Args:
x: size=[max_len]
Returns:
log_prob: size=[batch]
"""
_, log_px = self._forward(x)
return log_px
def get_delta_param(self, initial, transition, emission):
assert (initial.shape == self.initial.shape) and \
(transition.shape == self.transition.shape) and \
(emission.shape == self.emission.shape), """
Please make sure the inputs have the same shape to the current\
parameters.
"""
params_current = np.vstack([self.initial, self.transition, self.emission]).flatten()
params_new = np.vstack([initial, transition, emission]).flatten()
return np.linalg.norm(params_new - params_current, ord=2)