-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathinterpolator.go
92 lines (77 loc) · 2.09 KB
/
interpolator.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
package gease
import "math"
type interpolator struct {
damp, omega float64
x, v float64
}
func interp(x float64, overshoot float64, period float64) *interpolator {
i := &interpolator{
x: x,
}
i.configure(overshoot, period)
return i
}
func (i *interpolator) configure(overshoot float64, period float64) {
if overshoot < 0 {
overshoot = 0
}
if overshoot >= 1 {
overshoot = 0.9999
}
if period <= 0 {
period = 1 - 0.999
}
damp := 1.0
if overshoot > 0 {
damp = -math.Log(overshoot) / math.Sqrt(math.Pi*math.Pi+math.Log(overshoot))
}
// in case of numerical instability in the above, clamp:
if damp > 1 {
damp = 1
}
if damp < 0 {
damp = 0
}
omega := 1 / period * 2 * math.Pi
i.damp = damp
i.omega = omega
}
func (i *interpolator) converged(target, prec float64) bool {
return math.Abs(i.v) < prec && math.Abs(i.x-target) < prec
}
func (i *interpolator) step(target float64, dt float64) float64 {
// handle large time gaps (e.g. dropped frames) by taking several steps to not get to
// much error from the integration. Handle very large time steps (e.g. skipped) by simply
// setting it to the target, so as to prevent either a very long loop or adding to much
// energy to the system. It seems a a better fallback to revert to target with 0 velocity
// than something strange.
// This should be enough to allow us to use forward euler without stability problems, since
// we need not be numerically stable but simply look good.
// TODO: We might actually want a better integrator for faster convergence, such that the
// entire screen is not updated for longer than is needed. Also some indications that we see
// artifacts, should should probably use an implicit mehtod?
maxLength := 2 * i.omega
maxStep := i.omega / 100
if dt <= 0 {
return i.x
}
if dt > maxLength {
i.v = 0
i.x = target
return i.x
}
tr := dt
for tr > 0 {
dt = tr
if dt > maxStep {
dt = maxStep
}
tr -= dt
// euler forward, damped harmonic oscillator
nx := i.x + dt*i.v
nv := i.v + dt*(-2*i.damp*i.omega*i.v-i.omega*i.omega*(i.x-target))
i.x = nx
i.v = nv
}
return i.x
}