-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchap-fcd-rld-gal.tex
132 lines (109 loc) · 3.35 KB
/
chap-fcd-rld-gal.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
\chapter{Extending Galois connections between funcoids and reloids}
\begin{defn}
~
\begin{enumerate}
\item $\Phi_{\ast} f = \lambda b \in \mathfrak{B}: \bigsqcup \setcond{ x \in
\mathfrak{A} }{ f x \sqsubseteq b }$;
\item $\Phi^{\ast} f = \lambda b \in \mathfrak{A}: \bigsqcap \setcond{ x \in
\mathfrak{B} }{ f x \sqsupseteq b }$.
\end{enumerate}
\end{defn}
\begin{prop}
~
\begin{enumerate}
\item If $f$ has upper adjoint then $\Phi_{\ast} f$ is the upper adjoint
of $f$.
\item If $f$ has lower adjoint then $\Phi^{\ast} f$ is the lower adjoint
of $f$.
\end{enumerate}
\end{prop}
\begin{proof}
By theorem \bookref{adj-max}.
\end{proof}
\begin{lem}
$\Phi^{\ast} \torldout = \tofcd$.
\end{lem}
\begin{proof}
$(\Phi^{\ast} \torldout) f = \bigsqcap \setcond{ g
\in \mathsf{FCD} }{
\torldout g \sqsupseteq f } =
\bigsqcap^{\mathsf{FCD}} \setcond{ g \in \mathbf{Rel}
}{ \torldout g \sqsupseteq
f } = \bigsqcap^{\mathsf{FCD}} \setcond{ g \in
\mathbf{Rel} }{ g \sqsupseteq f } =
\tofcd f$.
\end{proof}
\begin{lem}
$\Phi_{\ast} \torldout \neq
\tofcd$.
\end{lem}
\begin{proof}
$(\Phi_{\ast} \torldout) f = \bigsqcup \setcond{ g
\in \mathsf{FCD} }{
\torldout g \sqsubseteq f }$
$(\Phi_{\ast} \torldout) \bot \neq \bot$.
\end{proof}
\begin{lem}
$\Phi^{\ast} \tofcd = \torldout$.
\end{lem}
\begin{proof}
$(\Phi^{\ast} \tofcd) f = \bigsqcap \setcond{ g \in
\mathsf{RLD} }{ \tofcd g
\sqsupseteq f } = \bigsqcap^{\mathsf{RLD}} \setcond{ g \in \mathbf{Rel}
}{ \tofcd g \sqsupseteq f } =
\bigsqcap^{\mathsf{RLD}} \setcond{ g \in \mathbf{Rel} }{ g
\sqsupseteq f } = \torldout f$.
\end{proof}
\begin{lem}
$\Phi_{\ast} \torldin = \tofcd$.
\end{lem}
\begin{proof}
$(\Phi_{\ast} \torldin) f = \bigsqcup \setcond{ g
\in \mathsf{FCD} }{
\torldin g \sqsubseteq f } = \bigsqcup
\setcond{ g \in \mathsf{FCD} }{ g \sqsubseteq
\tofcd f } = \tofcd f$.
\end{proof}
\begin{thm}
The picture at figure~\ref{dia:fcd-rld-gal} describes values of functions~$\Phi_{\ast}$ and~$\Phi^{\ast}$.
All nodes of this diagram are distinct.
\begin{figure}
\begin{tikzcd}
%\arrow[loop left]{l}{\Phi_{\ast}} \id \arrow[loop right]{r}{\Phi^{\ast}} \\
\tofcd %\arrow{u}{\Phi^{\ast}}
\arrow[leftrightarrow, shift left=1.0ex]{r}{\Phi_{\ast}} &
\torldin \arrow[shift left=1.0ex]{l}{\Phi^{\ast}} \\
\torldout \arrow[leftrightarrow]{u}{\Phi^{\ast}} \arrow{d}{\Phi_{\ast}} \\
\text{other}
\end{tikzcd}
\caption{\label{dia:fcd-rld-gal}}
\end{figure}
\end{thm}
\begin{proof}
Follows from the above lemmas.
\end{proof}
\begin{question}
What is at the node ``other''?
\end{question}
Trying to answer this question:
\begin{lem}
$(\Phi_{\ast}\torldout)\bot = \Omega^{\mathsf{FCD}}$.
\end{lem}
\begin{proof}
We have $\torldout\Omega^{\mathsf{FCD}} = \bot$.
$x\nsqsubseteq\Omega^{\mathsf{FCD}} \Rightarrow
\torldout x\sqsupseteq\Cor x\sqsupset\bot$.
Thus $\max\setcond{x\in\mathsf{FCD}}{\torldout x=\bot}=
\Omega^{\mathsf{FCD}}$.
So $(\Phi_{\ast}\torldout)\bot = \Omega^{\mathsf{FCD}}$.
\end{proof}
\begin{conjecture}
$(\Phi_{\ast}\torldout)f =
\Omega^{\mathsf{FCD}}\sqcup\tofcd f$.
\end{conjecture}
The above conjecture looks not natural, but I do not see
a better alternative formula.
\begin{question}
What happens if we keep applying $\Phi^{\ast}$ and $\Phi_{\ast}$ to the node ``other''?
Will we this way get a finite or infinite set?
\end{question}