-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchap-alt-bin.tex
407 lines (354 loc) · 19.2 KB
/
chap-alt-bin.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
\chapter{Alternative representations of binary relations}
\begin{thm}
Let $A$ and~$B$ be fixed sets. The diagram at the figure~\ref{rels-dia} is
a commutative diagram (in category $\mathbf{Set}$), every arrow in
this diagram is an isomorphism. Every cycle in this diagram is an
identity. All ``parallel'' arrows are mutually inverse.
For a Galois connection~$f$ I denote $f_0$ the lower adjoint and $f_1$ the upper adjoint.
For simplicity, in the diagram I equate $\subsets A$ and $\mathscr{T}A$.
\begin{figure}[ht]
\begin{tikzcd}[row sep=1cm, column sep=-1.0cm]
& \begin{tabular}{c}binary relations\\ between $A$ and $B$\end{tabular}
\arrow[rd, shift left, "\Psi_1^{-1}"]
\arrow[ld, shift left, "\Psi_2"] \\
\begin{tabular}{c}pointfree funcoids\\ between\\ $\subsets A$ and $\subsets B$\end{tabular}
\arrow[ru, shift left, "\Psi_2^{-1}"]
\arrow[rr, shift left, "\Psi_3"]
\arrow[rd, shift left, "\Psi_4"]
& & \begin{tabular}{c}antitone Galois\\ connections\\ between\\ $\subsets A$ and $\subsets B$\end{tabular}
\arrow[lu, shift left, "\Psi_1"]
\arrow[ll, shift left, "\Psi_3^{-1}"]
\arrow[ld, leftrightarrow, "\Psi_5=\Psi_5^{-1}"]
\\
& \begin{tabular}{c}Galois connections\\ between $\subsets A$ and $\subsets B$\end{tabular}
\arrow[lu, shift left, "\Psi_4^{-1}"]
\end{tikzcd}
\begin{flushleft}
\begin{description}
\item[$\Psi_1$] $f\mapsto\setcond{(x,y)}{y\in f_0\{x\}}=\setcond{(x,y)}{x\in f_1\{y\}}$
\item[$\Psi_1^{-1}$] $r\mapsto\left(X\mapsto\setcond{y\in B}{\forall x\in X:x\mathrel{r}y}, Y\mapsto\setcond{x\in A}{\forall y\in Y:x\mathrel{r}y}\right)$
\item[$\Psi_2$] $r\mapsto(\subsets A,\subsets B,\rsupfun{r},\rsupfun{r^{-1}})$
\item[$\Psi_2^{-1}$] $f\mapsto\setcond{(x,y)}{\{x\}\suprel{f}\{y\}}$
\item[$\Psi_3$] $f\mapsto\left(X\mapsto\bigsqcap_{x\in\mathscr{T} X\setminus\{\bot\}}\supfun{f}x,Y\mapsto\bigsqcap_{y\in\mathscr{T} Y\setminus\{\bot\}}\supfun{f^{-1}}y\right)=
\left(X\mapsto\bigsqcap_{x\in X}\supfun{f}\{x\},Y\mapsto\bigsqcap_{y\in Y}\supfun{f^{-1}}\{y\}\right)$
\item[$\Psi_3^{-1}$] $f\mapsto\left(\subsets A,\subsets B,X\mapsto\bigsqcup_{x\in\mathscr{T}X\setminus\{\bot\}}f_0 x,Y\mapsto\bigsqcup_{y\in\mathscr{T}Y\setminus\{\bot\}}f_1 y\right)=
\left(\subsets A,\subsets B,X\mapsto\bigsqcup_{x\in X}f_0\{x\},Y\mapsto\bigsqcup_{y\in Y}f_1\{y\}\right)$
\item[$\Psi_4$] $f\mapsto\left(X\mapsto\lnot\bigsqcap_{x\in\mathscr{T} X\setminus\{\bot\}}\supfun{f}x,Y\mapsto\bigsqcap_{y\in\mathscr{T} Y\setminus\{\bot\}}\supfun{f^{-1}}\lnot y\right)=
\left(X\mapsto\bigsqcup_{x\in\mathscr{T}X\setminus\{\bot\}}\lnot\supfun{f}x,Y\mapsto\bigsqcap_{y\in\mathscr{T} Y\setminus\{\bot\}}\supfun{f^{-1}}\lnot y\right)=
\left(X\mapsto\lnot \bigsqcap_{x\in X}\supfun{f}\{x\},Y\mapsto\bigsqcap_{y\in Y}\supfun{f^{-1}}\lnot \{y\}\right)=
\left(X\mapsto\bigsqcup_{x\in X}\lnot\supfun{f}\{x\},Y\mapsto\bigsqcap_{y\in Y}\supfun{f^{-1}}\lnot \{y\}\right)$
\item[$\Psi_4^{-1}$] $f\mapsto\left(\subsets A,\subsets B,X\mapsto\bigsqcup_{x\in\mathscr{T}X\setminus\{\bot\}}\lnot f_0 x,Y\mapsto\bigsqcup_{y\in\mathscr{T}Y\setminus\{\bot\}}f_1\lnot y\right)=
\left(\subsets A,\subsets B,X\mapsto\lnot\bigsqcap_{x\in\mathscr{T}X\setminus\{\bot\}}f_0 x,Y\mapsto\bigsqcup_{y\in\mathscr{T}Y\setminus\{\bot\}}f_1\lnot y\right)=
\left(\subsets A,\subsets B,X\mapsto\bigsqcup_{x\in X}\lnot f_0\{x\},Y\mapsto\bigsqcup_{y\in Y}f_1\lnot\{y\}\right)=
\left(\subsets A,\subsets B,X\mapsto\lnot\bigsqcap_{x\in X}f_0\{x\},Y\mapsto\bigsqcup_{y\in Y}f_1\lnot\{y\}\right)$
\item[$\Psi_5=\Psi_5^{-1}$] $f\mapsto(\mathord{\lnot}\circ f_0,f_1\circ\mathord{\lnot})$
\end{description}
\end{flushleft}
\caption{\label{rels-dia}}
\end{figure}
\end{thm}
\begin{proof}
First, note that despite we use the notation~$\Psi_i^{-1}$, it is not yet proved that~$\Psi_i^{-1}$ is the inverse of~$\Psi_i$. We will prove it below.
Now prove a list of claims. First concentrate on the upper ``triangle'' of the diagram (the lower one will be considered later).
\begin{claim}
$\setcond{(x,y)}{y\in f_0\{x\}}=\setcond{(x,y)}{x\in f_1\{y\}}$ when $f$ is an antitone Galois connection between~$\subsets A$ and~$\subsets B$.
\end{claim}
\begin{claimproof}
$y\in f_0\{x\}\Leftrightarrow\{y\}\sqsubseteq f_0\{x\}\Leftrightarrow\{x\}\sqsubseteq f_1\{y\}\Leftrightarrow x\in f_1\{y\}$.
\end{claimproof}
\begin{claim}
$\scriptstyle \left(X\mapsto\bigsqcap_{x\in\mathscr{T} X\setminus\{\bot\}}\supfun{f}x,Y\mapsto\bigsqcap_{y\in\mathscr{T} Y\setminus\{\bot\}}\supfun{f^{-1}}y\right)=
\left(X\mapsto\bigsqcap_{x\in X}\supfun{f}\{x\},Y\mapsto\bigsqcap_{y\in Y}\supfun{f^{-1}}\{y\}\right)$
when $f$ is a pointfree funcoid between~$\subsets A$ and~$\subsets B$.
\end{claim}
\begin{claimproof}
It is enough to prove $\bigsqcap_{x\in\mathscr{T} X\setminus\{\bot\}}\supfun{f}x = \bigsqcap_{x\in X}\supfun{f}\{x\}$ (the rest follows from symmetry).
$\bigsqcap_{x\in\mathscr{T} X\setminus\{\bot\}}\supfun{f}x \sqsubseteq \bigsqcap_{x\in X}\supfun{f}\{x\}$ because
$\mathscr{T} X\setminus\{\bot\}\supseteq\setcond{\{x\}}{x\in X}$.
$\bigsqcap_{x\in\mathscr{T} X\setminus\{\bot\}}\supfun{f}x \sqsupseteq \bigsqcap_{x\in X}\supfun{f}\{x\}$ because
if $x\in\mathscr{T} X\setminus\{\bot\}$ then we can take $x'\in x$ that is $\{x'\}\subseteq x$ and thus
$\supfun{f}x \sqsupseteq \supfun{f}\{x'\}$, so
$\bigsqcap_{x\in\mathscr{T} X\setminus\{\bot\}}\supfun{f}x \sqsupseteq \bigsqcap_{x\in\mathscr{T} X\setminus\{\bot\}}\supfun{f}\{x'\} \sqsupseteq
\bigsqcap_{x\in X}\supfun{f}\{x\}$.
\end{claimproof}
\begin{flushleft}
\begin{claim}
$\left(\subsets A,\subsets B,X\mapsto\bigsqcup_{x\in\mathscr{T}X\setminus\{\bot\}}f_0 x,Y\mapsto\bigsqcup_{y\in\mathscr{T}Y\setminus\{\bot\}}f_1 y\right) =
\left(\subsets A,\subsets B,X\mapsto\bigsqcup_{x\in X}f_0\{x\},Y\mapsto\bigsqcup_{y\in Y}f_1\{y\}\right)$
when $f$ is an antitone Galois connection between~$\subsets A$ and~$\subsets B$.
\end{claim}
\end{flushleft}
\begin{claimproof}
It is enough to prove $\bigsqcup_{x\in\mathscr{T}X\setminus\{\bot\}}f_0 x=\bigsqcup_{x\in X}f_0\{x\}$ (the rest follows from symmetry).
We have $\bigsqcup_{x\in\mathscr{T}X\setminus\{\bot\}}f_0 x\sqsupseteq\bigsqcup_{x\in X}f_0\{x\}$ because $\{x\}\in\mathscr{T}X\setminus\{\bot\}$.
Let $x\in\mathscr{T}X\setminus\{\bot\}$. Take $x'\in X$. We have $f_0 x\sqsubseteq f_0\{x'\}$ and thus
$f_0 x\sqsubseteq \bigsqcup_{x\in X}f_0\{x\}$. So $\bigsqcup_{x\in\mathscr{T}X\setminus\{\bot\}}f_0 x\sqsubseteq\bigsqcup_{x\in X}f_0\{x\}$.
\end{claimproof}
\begin{claim}
$\Psi_3^{-1} = \Psi_2\circ\Psi_1$.
\end{claim}
\begin{claimproof}
$\Psi_2\Psi_1 f = \left(\subsets A,\subsets B,X\mapsto\setcond{y}{\exists x\in X:(x,y)\in\Psi_1 f},Y\mapsto\setcond{x}{\exists y\in Y:(x,y)\in\Psi_1 f}\right) =
\left(\subsets A,\subsets B,X\mapsto\setcond{y}{\exists x\in X:y\in f_0\{x\}},Y\mapsto\setcond{x}{\exists y\in Y:x\in f_1\{y\}}\right) =
\left(\subsets A,\subsets B,X\mapsto\bigsqcup_{x\in X}f_0\{x\},Y\mapsto\bigsqcup_{y\in Y}f_1\{y\}\right) =
\Psi_3^{-1} f$.
\end{claimproof}
\begin{claim}
$\Psi_3 = \Psi_1^{-1}\circ\Psi_2^{-1}$.
\end{claim}
\begin{claimproof}
$\Psi_1^{-1}\Psi_2^{-1} f =
\left(X\mapsto\setcond{y\in B}{\forall x\in X:\{x\}\suprel{f}\{y\}}, Y\mapsto\setcond{x\in A}{\forall y\in Y:\{x\}\suprel{f}\{y\}}\right) =
\left(X\mapsto\setcond{y\in B}{\forall x\in X:y\in\supfun{f}\{x\}}, Y\mapsto\setcond{x\in A}{\forall y\in Y:x\in\supfun{f^{-1}}\{y\}}\right) =
\left(X\mapsto\bigsqcap_{x\in X}\supfun{f}\{x\},Y\mapsto\bigsqcap_{y\in Y}\supfun{f^{-1}}\{y\}\right) = \Psi_3 f$.
\end{claimproof}
\begin{claim}
$\Psi_1$ maps antitone Galois connections between~$\subsets A$ and~$\subsets B$ into binary relations between~$A$ and~$B$.
\end{claim}
\begin{claimproof}
Obvious.
\end{claimproof}
\begin{claim}
$\Psi_1^{-1}$ maps binary relations between~$A$ and~$B$ into antitone Galois connections between~$\subsets A$ and~$\subsets B$.
\end{claim}
\begin{claimproof}
We need to prove $Y\subseteq\setcond{y\in B}{\forall x\in X:x\mathrel{r}y}\Leftrightarrow X\subseteq\setcond{x\in A}{\forall y\in Y:x\mathrel{r}y}$.
After we equivalently rewrite it:
\[\forall y\in Y \forall x\in X:x\mathrel{r}y\Leftrightarrow\forall x\in X\forall y\in Y:x\mathrel{r}y\]
it becomes obvious.
\end{claimproof}
\begin{claim}
$\Psi_2$ maps binary relations between~$A$ and~$B$ into pointfree funcoids between~$\subsets A$ and~$\subsets B$.
\end{claim}
\begin{claimproof}
We need to prove that $f=(\subsets A,\subsets B,\supfun{f},\supfun{f^{-1}})$ is a pointfree funcoids that is $Y\nasymp\supfun{f}X\Leftrightarrow X\nasymp\supfun{f^{-1}}Y$. Really, for every
$X\in\mathscr{T}A$, $Y\in\mathscr{T}B$
\begin{multline*}
Y\nasymp\supfun fX\Leftrightarrow Y\nasymp\rsupfun rX\Leftrightarrow Y\nasymp\supfun rX\Leftrightarrow\\
X\nasymp\supfun{r^{-1}}Y\Leftrightarrow X\nasymp\rsupfun{r^{-1}}Y\Leftrightarrow X\nasymp\supfun{f^{-1}}Y.
\end{multline*}
\end{claimproof}
\begin{claim}
$\Psi_2^{-1}$ maps pointfree funcoids between~$\subsets A$ and~$\subsets B$ into binary relations between~$A$ and~$B$.
\end{claim}
\begin{claimproof}
Suppose $f\in\mathsf{pFCD}(\mathscr{T}A,\mathscr{T}B)$ and prove
that the relation defined by the formula~$\Psi_2^{-1}$ exists.
To prove it, it's enough to show that $y\in\supfun f\{x\}\Leftrightarrow x\in\supfun{f^{-1}}\{y\}$.
Really,
\[
y\in\supfun f\{x\}\Leftrightarrow\{y\}\nasymp\supfun f\{x\}\Leftrightarrow\{x\}\nasymp\supfun{f^{-1}}\{y\}\Leftrightarrow x\in\supfun{f^{-1}}\{y\}.
\]
\end{claimproof}
\begin{claim}
$\Psi_3$ maps pointfree funcoids between~$\subsets A$ and~$\subsets B$ into antitone Galois connections between~$\subsets A$ and~$\subsets B$.
\end{claim}
\begin{claimproof}
Because $\Psi_3 = \Psi_1^{-1}\circ\Psi_2^{-1}$.
\end{claimproof}
\begin{claim}
$\Psi_3^{-1}$ maps antitone Galois connections between~$\subsets A$ and~$\subsets B$ into pointfree funcoids between~$\subsets A$ and~$\subsets B$.
\end{claim}
\begin{claimproof}
Because $\Psi_3^{-1} = \Psi_2\circ\Psi_1$.
\end{claimproof}
\begin{claim}
$\Psi_2$ and $\Psi_2^{-1}$ are mutually inverse.
\end{claim}
\begin{claimproof}
Let $r_{0}\in\subsets(A\times B)$ and $f\in\mathsf{pFCD}(\mathscr{T}A,\mathscr{T}B)$
corresponds to~$r_{0}$ by the formula~$\Psi_2$; let $r_{1}\in\subsets(A\times B)$
corresponds to~$f$ by the formula~$\Psi_2^{-1}$. Then $r_{0}=r_{1}$
because
\[
(x,y)\in r_{0}\Leftrightarrow y\in\rsupfun{r_{0}}\{x\}\Leftrightarrow y\in\supfun f\{x\}\Leftrightarrow(x,y)\in r_{1}.
\]
Let now $f_{0}\in\mathsf{pFCD}(\mathscr{T}A,\mathscr{T}B)$ and $r\in\subsets(A\times B)$
corresponds to~$f_{0}$ by the formula~$\Psi_2^{-1}$; let $f_{1}\in\mathsf{pFCD}(\mathscr{T}A,\mathscr{T}B)$
corresponds to~$r$ by the formula~$\Psi_2$. Then $(x,y)\in r\Leftrightarrow y\in\supfun{f_{0}}\{x\}$
and $\supfun{f_{1}}=\rsupfun r$; thus
\[
y\in\supfun{f_{1}}\{x\}\Leftrightarrow y\in\rsupfun r\{x\}\Leftrightarrow(x,y)\in r\Leftrightarrow y\in\supfun{f_{0}}\{x\}.
\]
So $\supfun{f_{0}}=\supfun{f_{1}}$. Similarly $\supfun{f_{0}^{-1}}=\supfun{f_{1}^{-1}}$.
\end{claimproof}
\begin{claim}
$\Psi_1$ and $\Psi_1^{-1}$ are mutually inverse.
\end{claim}
\begin{claimproof}
Let $r_0\in\subsets(A\times B)$ and $f\in\mathscr{T}A\otimes\mathscr{T}B$
corresponds to~$r_{0}$ by the formula~$\Psi_1^{-1}$; let $r_{1}\in\subsets(A\times B)$
corresponds to~$f$ by the formula~$\Psi_1$. Then $r_{0}=r_{1}$ because
\[
(x,y)\in r_1 \Leftrightarrow y\in f_0\{x\} \Leftrightarrow y\in\setcond{y\in B}{x\mathrel{r_0}y} \Leftrightarrow x\mathrel{r_0}y.
\]
Let now $f_{0}\in\mathscr{T}A\otimes\mathscr{T}B$ and $r\in\subsets(A\times B)$
corresponds to~$f_{0}$ by the formula~$\Psi_1$; let $f_{1}\in\mathscr{T}A\otimes\mathscr{T}B$
corresponds to~$r$ by the formula~$\Psi_1^{-1}$. Then $f_0=f_1$ because
\begin{multline*}
f_{10} X = \setcond{y\in B}{\forall x\in X:x\mathrel{r}y} = \setcond{y\in B}{\forall x\in X:y\in f_{00}\{x\}} = \\
\bigsqcap_{x\in X}f_{00}\{x\} = \text{(obvious~\ref{polar-flip})} = f_{00}X.
\end{multline*}
\end{claimproof}
\begin{claim}
$\Psi_3$ and $\Psi_3^{-1}$ are mutually inverse.
\end{claim}
\begin{claimproof}
Because $\Psi_3^{-1} = \Psi_2\circ\Psi_1$ and $\Psi_3 = \Psi_1^{-1}\circ\Psi_2^{-1}$
and that $\Psi_2^{-1}$ is the inverse of $\Psi_2$ and $\Psi_3^{-1}$ is the inverse of $\Psi_3$ were proved above.
\end{claimproof}
Now switch to the lower ``triangle'':
\begin{flushleft}
\begin{claim}
$\left(X\mapsto\bigsqcup_{x\in\mathscr{T}X\setminus\{\bot\}}\lnot f_0 x,Y\mapsto\bigsqcup_{y\in\mathscr{T}Y\setminus\{\bot\}}f_1\lnot y\right)=\left(X\mapsto\bigsqcup_{x\in X}\lnot f_0\{x\},Y\mapsto\bigsqcup_{y\in Y}f_1\lnot\{y\}\right)$.
\end{claim}
\end{flushleft}
\begin{claimproof}
It is enough to prove $\bigsqcup_{x\in\mathscr{T}X\setminus\{\bot\}}\lnot f_0 x = \bigsqcup_{x\in X}\lnot f_0\{x\}$ for a Galois connection~$f$
(the rest follows from symmetry).
$\bigsqcup_{x\in\mathscr{T}X\setminus\{\bot\}}\lnot f_0 x \sqsupseteq \bigsqcup_{x\in X}\lnot f_0\{x\}$ because $\{x\}\in\mathscr{T}X\setminus\{\bot\}$.
If $x\in\mathscr{T}X\setminus\{\bot\}$ then there exists $x'\in\{x\}$ and thus $\lnot f_0\{x'\}\sqsupseteq \lnot f_0 x$. Thus
$\lnot f_0 x \sqsubseteq \bigsqcup_{x\in X} \lnot f_0 \{x\}$ and so
$\bigsqcup_{x\in\mathscr{T}X\setminus\{\bot\}}\lnot f_0 x \sqsubseteq \bigsqcup_{x\in X}\lnot f_0\{x\}$.
\end{claimproof}
\begin{claim}
$\Psi_5$ is self-inverse.
\end{claim}
\begin{claimproof}
Obvious.
\end{claimproof}
\begin{claim}
$\Psi_4 = \Psi_5\circ\Psi_3$.
\end{claim}
\begin{claimproof}
Easily follows from symmetry.
\end{claimproof}
\begin{claim}
$\Psi_4^{-1} = \Psi_3^{-1}\circ\Psi_5^{-1}$.
\end{claim}
\begin{claimproof}
Easily follows from symmetry.
\end{claimproof}
\begin{claim}
$\Psi_4$ and $\Psi_4^{-1}$ are mutually inverse.
\end{claim}
\begin{claimproof}
From two above claims and the fact that
$\Psi_3^{-1}$ is the inverse of $\Psi_3$ and $\Psi_5^{-1}$ is the inverse of $\Psi_5$ proved above.
\end{claimproof}
Note that now we have proved that $\Psi_i$ and $\Psi_i^{-1}$ are mutually inverse for all $i=1,2,3,4,5$.
\begin{claim}
For every path of the diagram on figure~\ref{rels-dia2} started with the circled node, the corresponding morphism is with which the node is labeled.
\begin{figure}[ht]
\begin{tikzcd}[row sep=1cm, column sep=0.5cm]
& \circled{1}
\arrow[rd, shift left, "\Psi_1^{-1}"]
\arrow[ld, shift left, "\Psi_2"] \\
\Psi_2
\arrow[ru, shift left, "\Psi_2^{-1}"]
\arrow[rr, shift left, "\Psi_3"]
\arrow[rd, shift left, "\Psi_4"]
& & \Psi_1^{-1}
\arrow[lu, shift left, "\Psi_1"]
\arrow[ll, shift left, "\Psi_3^{-1}"]
\arrow[ld, leftrightarrow, "\Psi_5=\Psi_5^{-1}"]
\\
& \Psi_5\circ\Psi_1^{-1}
\arrow[lu, shift left, "\Psi_4^{-1}"]
\end{tikzcd}
\caption{\label{rels-dia2}}
\end{figure}
\end{claim}
\begin{claimproof}
Take into account that $\Psi_3^{-1} = \Psi_2\circ\Psi_1$, $\Psi_4 = \Psi_5\circ\Psi_3$
and thus also $\Psi_4\circ\Psi_2 = \Psi_5\circ\Psi_1^{-1}$.
Now prove it by induction on path length.
\end{claimproof}
\begin{claim}
Every cycle in the diagram at figure~\ref{rels-dia} is identity.
\end{claim}
\begin{claimproof}
For cycles starting at the top node it follows from the previous claim.
For arbitrary cycles it follows from theorem~\ref{rehash-isos}.
\end{claimproof}
\begin{claim}
The diagram at figure~\ref{rels-dia} is commutative.
\end{claim}
\begin{claimproof}
From the previous claim.
\end{claimproof}
\end{proof}
\begin{prop}
We equate the set of binary relations between~$A$ and~$B$ with $\mathbf{Rld}(A,B)$.
$\Psi_2$ and~$\Psi_2^{-1}$ from the diagram at figure~\ref{rels-dia} preserve composition and identities (that are functors
between categories $\mathbf{Rel}$ and $(A,B)\mapsto\mathsf{pFCD}(\mathscr{T}A,\mathscr{T}B)$) and also reversal ($f\mapsto f^{-1}$).
\end{prop}
\begin{proof}
Let $\supfun f=\rsupfun p$ and $\supfun g=\rsupfun q$. Then $\supfun{g\circ f}=\supfun g\circ\supfun f=\rsupfun q\circ\rsupfun p=\rsupfun{q\circ p}$.
Likewise $\supfun{(g\circ f)^{-1}}=\rsupfun{(q\circ p)^{-1}}$. So
$\Phi_2$ preserves composition.
Let $p=1_{\mathbf{Rel}}^{A}$ for some set~$A$. Then $\supfun f=\rsupfun p=\rsupfun{1_{\mathbf{Rel}}^{A}}=\id_{\subsets A}$
and likewise $\supfun{f^{-1}}=\id_{\subsets A}$, that is $f$ is
an identity pointfree funcoid. So $\Phi_2$ preserves identities.
That $\Phi_2^{-1}$ preserves composition and identities follows from the fact that it is an isomorphism.
That is preserves reversal follows from the formula $\supfun{f^{-1}}=\rsupfun{p^{-1}}$.
\end{proof}
\begin{prop}
The bijections $\Psi_2$ and~$\Psi_2^{-1}$ from the diagram at figure~\ref{rels-dia} preserves monovaluedness
and injectivity.\end{prop}
\begin{proof}
Because it is a functor which preserves reversal.\end{proof}
\begin{prop}
The bijections $\Psi_2$ and~$\Psi_2^{-1}$ from the diagram at figure~\ref{rels-dia} preserves domain
an image.\end{prop}
\begin{proof}
$\im f=\supfun f\top=\rsupfun p\top=\im p$, likewise for domain.\end{proof}
\begin{prop}
The bijections $\Psi_2$ and~$\Psi_2^{-1}$ from the diagram at figure~\ref{rels-dia} maps cartesian
products to corresponding funcoidal products.\end{prop}
\begin{proof}
$\supfun{A\times^{\mathsf{FCD}}B}X=\begin{cases}
B & \text{if }X\nasymp A\\
\bot & \text{if }X\asymp A
\end{cases}=\rsupfun{A\times B}X$. Likewise $\supfun{(A\times^{\mathsf{FCD}}B)^{-1}}Y=\rsupfun{(A\times B)^{-1}}Y$.\end{proof}
Let $\Phi$ map a pointfree funcoid whose first component is~$c$ into the Galois connection whose lower adjoint is~$c$.
Then $\Phi$ is an isomorphism (theorem~\ref{bfunc-is-adj}) and
$\Phi^{-1}$ maps a Galois connection whose lower adjoint is~$c$ into the pointfree funcoid whose first component is~$c$.
Informally speaking, $\Phi$ replaces a relation~$r$ with its complement relations~$\lnot r$. Formally:
\begin{prop}
~
\begin{enumerate}
\item For every path~$P$ in the diagram at figure~\ref{rels-dia} from binary relations between $A$ and $B$
to pointfree funcoids between $\subsets A$ and $\subsets B$
and every path~$Q$ in the diagram at figure~\ref{rels-dia} from
Galois connections between $\subsets A$ and $\subsets B$
to binary relations between $A$ and $B$,
we have $Q\Phi P r = \lnot r$.
\item For every path~$Q$ in the diagram at figure~\ref{rels-dia} from binary relations between $A$ and $B$
to pointfree funcoids between $\subsets A$ and $\subsets B$
and every path~$P$ in the diagram at figure~\ref{rels-dia}
from Galois connections between $\subsets A$ and $\subsets B$
to binary relations between $A$ and $B$,
we have $P\Phi^{-1} Q r = \lnot r$.
\end{enumerate}
\end{prop}
\begin{proof}
We will prove only the second ($P\circ \Phi^{-1}\circ Q = \lnot$), because the first ($Q\circ\Phi\circ P= \lnot$)
can be obtained from it by inverting the morphisms (and variable replacement).
Because the diagram is commutative, it is enough to prove it for some fixed~$P$ and~$Q$.
For example, we will prove $\Psi_2^{-1} \Phi^{-1} \Psi_4 \Psi_2 r = \neg r$.
$\Psi_4 \Psi_2 r = \left( X \mapsto \neg \bigsqcap_{x \in X} \rsupfun{r}
\{ x \} , Y \mapsto \bigsqcap_{y \in Y} \rsupfun{r} \neg \{ y \} \right)$.
$\Phi^{-1} \Psi_4 \Psi_2 r$ is pointfree funcoid $f$ with $\supfun{f}
= X \mapsto \neg \bigsqcap_{x \in X} \rsupfun{r} \{ x \}$.
$\Psi_2^{-1} \Phi^{-1} \Psi_4 \Psi_2 r$ is the relation consisting of $(x ,
y)$ such that $\{ x \} \suprel{f} \{ y \}$ what is equivalent to: $\{ y \}
\nasymp \supfun{f} \{ x \}$; $\{ y \} \nasymp \neg \rsupfun{r} \{ x \}$; $\{ y \} \nsqsubseteq \rsupfun{r} \{ x \}$; $y \notin \rsupfun{r} \{ x \}$.
So $\Psi_2^{-1} \Phi^{-1} \Psi_4 \Psi_2 r = \neg r$.
\end{proof}
\begin{prop}
$\Phi$ and $\Phi^{-1}$ preserve composition.
\end{prop}
\begin{proof}
By definitions of compositions and the fact that both pointfree funcoids and Galois connections are determined by the first component.
\end{proof}