forked from vlimant/mpi_opt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmpiLAPI.py
215 lines (194 loc) · 8.53 KB
/
mpiLAPI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
#!/usr/bin/env python3
import os
import keras
import glob
import h5py
import hashlib
import time
from densenet import DenseNet
from keras.optimizers import Adam
from argparse import ArgumentParser
from subprocess import check_output,call,getoutput,Popen
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Conv2D, MaxPooling2D
import tensorflow as tf
import numpy as np
import keras.backend as K
class mpi_learn_api:
def __init__(self, **args):
if not os.path.isdir('./tmp'):
print("creating directory")
os.makedirs('./tmp')
if not 'nohash' in args:
args['check'] = time.mktime(time.gmtime())
hash = hashlib.md5(str(args).encode('utf-8')).hexdigest()
self.json_file = './tmp/%s.json'% hash
#print("self.jsonfile = {}".format(self.json_file))
if os.path.isfile( self.json_file ) :
print("hash",hash,"cannot work")
sys.exit(1)
self.train_files = 'tmp/%s_train.list'%hash
self.val_files = 'tmp/%s_val.list'%hash
else:
self.train_files = 'tmp/train.list'
self.val_files = 'tmp/val.list'
if not 'model_name' in args:
self.json_file = 'tmp/tmp.json'
else:
self.json_file = 'tmp/{}.json'.format(args['model_name'])
open(self.json_file,'w').write(args['model'])
if 'train_files' in args:
open(self.train_files,'w').write( '\n'.join(args['train_files']))
elif 'train_pattern' in args:
a_list = sorted(glob.glob( args['train_pattern']))
if args.get('check_file',False): a_list = self._check_files(a_list)
open(self.train_files,'w').write( '\n'.join( a_list ))
else:
self.train_files = args['train_list']
if 'val_files' in args:
open(self.val_files,'w').write( '\n'.join(args['val_files']))
elif 'val_pattern' in args:
a_list = sorted(glob.glob(args['val_pattern']))
if args.get('check_file',False): a_list = self._check_files(a_list)
open(self.val_files,'w').write( '\n'.join( a_list ))
else:
self.val_files = args['val_list']
def _check_files(self, a_list):
for fn in sorted(a_list):
try:
f = h5py.File(fn)
l = sorted(f.keys())
assert len(l)>1
f.close()
except:
print(fn,"not usable")
a_list.remove(fn)
return a_list
def train(self, **args):
com = 'mpirun -n %d mpi_learn/MPIDriver.py %s %s %s'%(
args.get('N', 2),
self.json_file,
self.train_files,
self.val_files
)
for option,default in { 'trial_name' : 'mpi_run',
'master_gpu' : True,
'features_name' : 'X',
'labels_name' : 'Y',
'epoch' : 100,
'batch' : 100,
'loss' : 'categorical_crossentropy',
'verbose': False,
'early_stopping' : False,
'easgd' : False,
'tf': True,
'elastic_force': 0.9,
'elastic_momentum': 0.99,
'elastic_lr':0.001,
}.items():
v = args.get(option,default)
if type(v)==bool:
com +=' --%s'%option.replace('_','-') if v else ''
else:
com+=' --%s %s'%(option.replace('_','-'), v)
print(com)
return getoutput(com)
def train_async(self, get_output=True, **args):
com = 'mpirun -n %d mpi_learn/MPIDriver.py %s %s %s'%(
args.get('N', 2),
self.json_file,
self.train_files,
self.val_files
)
for option,default in { 'trial_name' : 'mpi_run',
'master_gpu' : True,
'features_name' : 'X',
'labels_name' : 'Y',
'epoch' : 100,
'batch' : 100,
'loss' : 'categorical_crossentropy',
'verbose': False,
'early_stopping' : False,
'easgd' : False,
'tf': True,
'elastic_force': 0.9,
'elastic_momentum': 0.99,
'elastic_lr':0.001,
}.items():
v = args.get(option,default)
if type(v)==bool:
com +=' --%s'%option.replace('_','-') if v else ''
else:
com+=' --%s %s'%(option.replace('_','-'), v)
print(com)
if not get_output:
import tempfile
tfil = tempfile.TemporaryFile()
return Popen(com, shell=True, stdout=tfil, stderr=tfil)
else:
return Popen(com, shell=True)
def test_mnist(**args):
model = models.make_mnist_model(**args)
return model.to_json()
def test_cifar10(**args):
model = models.make_cifar10_model(**args)
return model.to_json()
def test_topclass(**args):
model = models.make_topclass_model(**args)
return model.to_json()
def test_cnn(**args):
return test_topclass(**args)
def test_densenet(nb_classes = 3, img_dim = (150, 94, 5), depth = 10, nb_dense_block = 3, growth_rate = 12, dropout_rate= 0.00, nb_filter = 16, lr = 1e-3):
densenet = DenseNet(nb_classes = nb_classes, img_dim = img_dim, depth = depth, nb_dense_block = nb_dense_block, growth_rate = growth_rate, dropout_rate = dropout_rate, nb_filter = nb_filter)
optimizer = Adam(lr = lr)
densenet.compile(loss='categorical_crossentropy', optimizer = optimizer)
return densenet.to_json()
def test_pytorch_cnn(conv_layers=2, dense_layers=2, dropout=0.5, classes=3, in_channels=5):
from PytorchCNN import CNN
import torch
pytorch_cnn = CNN(conv_layers=conv_layers, dense_layers=dense_layers, dropout=dropout, classes=classes, in_channels=in_channels)
username = os.environ.get('USER')
os.system('mkdir -p /tmp/{}'.format( username ))
PATH = "/tmp/{}/test_{}_pytorch_cnn_{}_{}_{}.torch".format(username,os.getpid(),conv_layers,dense_layers,dropout) # To be determined where is the best location to save it
os.system('rm -f %s'%PATH)
torch.save(pytorch_cnn, PATH)
return PATH
def get_args():
parser = ArgumentParser()
parser.add_argument("--blocks", help = "Number of dense blocks", type=int, default=12)
parser.add_argument("--growth", help = "Growth rate", type=int, default=12)
parser.add_argument("--dropout", help = "Dropout rate", type=float, default = 0)
parser.add_argument("--filters", help = "Number of filters", type = int, default = 16)
parser.add_argument("--lr", help = "Initial learning rate", type = float, default = 1e-3)
args = parser.parse_args()
return args
if __name__ == "__main__":
args = get_args()
depth = args.blocks * 3 + 4
print("Model depth = {}".format(depth))
from keras.models import model_from_json
# os.environ["CUDA_VISIBLE_DEVICES"]="0,3,4,5"
# import setGPU
# gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.3)
#sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=True))
#sess.close()
#model = test_densenet(depth = depth, growth_rate = args.growth, dropout_rate = args.dropout, nb_filter = args.filters, lr = args.lr)
model = test_cnn()
mlapi = mpi_learn_api( model = model,
train_pattern = '/bigdata/shared/LCDJets_Remake/train/04*.h5',
val_pattern = '/bigdata/shared/LCDJets_Remake/val/020*.h5',
check_file = True
)
output = mlapi.train(N=1,
trial_name = 'test',
features_name = 'Images',
labels_name = 'Labels',
batch = 4,
epoch = 10,
verbose = True,
loss = 'categorical_crossentropy',
easgd = False,
early_stopping = 5
)
#print(output)