forked from vlimant/mpi_opt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhyperparameter_search_option3.py
executable file
·380 lines (343 loc) · 17.2 KB
/
hyperparameter_search_option3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
#!/usr/bin/env python3
import sys,os
import numpy as np
import argparse
import json
import time
import glob
import socket
from mpi4py import MPI
import hashlib
sys.path.append(os.path.dirname(os.path.realpath(__file__))+'/mpi_learn_src')
from mpi_learn.train.algo import Algo
from mpi_learn.train.data import H5Data
from mpi_learn.train.model import ModelFromJsonTF, ModelPytorch
from mpi_learn.utils import import_keras
import mpi_learn.mpi.manager as mm
from mpi_learn.train.GanModel import GANBuilder
from skopt.space import Real, Integer, Categorical
class BuilderFromFunction(object):
def __init__(self, model_fn, parameters=None):
self.model_fn = model_fn
if parameters is None:
self.parameters = model_fn.parameter_range
else:
self.parameters = parameters
def _args(self,*params):
args = dict(zip([p.name for p in self.parameters],params))
return args
def _json(self,*params):
m = self.model_fn( **self._args(*params))
return m.to_json()
def builder(self,*params):
try:
return ModelFromJsonTF(None,
json_str=self._json(*params))
except:
str_param = ','.join('{0}={1!r}'.format(k,v) for k,v in self._args(*params).items())
print("Failed to build model with params: {}".format(str_param))
return None
class BuilderFromFunctionJ(BuilderFromFunction):
def __init__(self, model_fn, parameters=None):
BuilderFromFunction.__init__(self, model_fn, parameters)
def _json(self,*params):
return self.model_fn( **self._args(*params))
class TorchBuilderFromFunction(BuilderFromFunction):
def __init__(self, model_fn, parameters=None, gpus=0):
super().__init__(model_fn, parameters)
self.gpus = gpus
def builder(self, *params):
args = dict(zip([p.name for p in self.parameters], params))
try:
model_pytorch = self.model_fn(**args)
## save it to a temp file indeed
username = os.environ.get('USER')
os.system('mkdir -p /tmp/{}'.format( username ))
args_s = str(args).encode('utf-8')
hashs = hashlib.sha224(args_s).hexdigest()
model_path = "/tmp/{}/_{}_{}_pytorch.torch".format(username,os.getpid(),hashs)
torch.save(model_pytorch, model_path)
return ModelPytorch(None, filename=model_path, gpus=self.gpus)
except:
str_param = ','.join('{0}={1!r}'.format(k,v) for k,v in args.items())
print("Failed to build model with params: {}".format(str_param))
return None
import coordinator
import process_block
try:
## first try to get from mpi_learn
import models.Models as models
except:
print ("failed to load mpi_learn")
## where the models were defined before
#import mpiLAPI as mpi
def get_block_num(comm, block_size):
"""
Gets the correct block number for this process.
The coordinator (process 0) is in block 999.
The other processes are divided according to the block size.
"""
rank = comm.Get_rank()
if rank == 0:
return 0
block_num, rank_in_block = divmod( rank-1, block_size)
#block_num = int((rank-1) / block_size) + 1
block_num+=1 ## as blocknum 0 is the skopt-master
return block_num
def check_sanity(args):
assert args.block_size > 1, "Block size must be at least 2 (master + worker)"
def make_parser():
parser = argparse.ArgumentParser()
parser.add_argument('--verbose', action='store_true')
parser.add_argument('--monitor',help='Monitor cpu and gpu utilization', action='store_true')
parser.add_argument('--label',default='hOpt')
parser.add_argument('--batch', help='batch size', default=128, type=int)
parser.add_argument('--epochs', help='number of training epochs', default=10, type=int)
parser.add_argument('--optimizer',help='optimizer for master to use',default='adam')
parser.add_argument('--loss',help='loss function',default='binary_crossentropy')
parser.add_argument('--sync-every', help='how often to sync weights with master',
default=1, type=int, dest='sync_every')
parser.add_argument('--preload-data', help='Preload files as we read them', default=0, type=int, dest='data_preload')
parser.add_argument('--cache-data', help='Cache the input files to a provided directory', default='', dest='caching_dir')
parser.add_argument('--early-stopping', default=None,
dest='early_stopping', help='patience for early stopping')
parser.add_argument('--target-metric', default=None,
dest='target_metric', help='Passing configuration for a target metric')
############################
## EASGD block of option
parser.add_argument('--easgd',help='use Elastic Averaging SGD',action='store_true')
parser.add_argument('--worker-optimizer',help='optimizer for workers to use',
dest='worker_optimizer', default='sgd')
parser.add_argument('--elastic-force',help='beta parameter for EASGD',type=float,default=0.9)
parser.add_argument('--elastic-lr',help='worker SGD learning rate for EASGD',
type=float, default=1.0, dest='elastic_lr')
parser.add_argument('--elastic-momentum',help='worker SGD momentum for EASGD',
type=float, default=0, dest='elastic_momentum')
############################
parser.add_argument('--block-size', type=int, default=2,
help='number of MPI processes per block')
parser.add_argument('--n-fold', type=int, default=1, dest='n_fold',
help='Number of folds used to estimate the figure of merit')
parser.add_argument('--n-master', type=int, default=1, dest='n_master',
help='Number of master per group')
parser.add_argument('--n-process', type=int, default=1, dest='n_process',
help='Number of process per worker instance')
parser.add_argument('--num-iterations', type=int, default=10,
help='The number of steps in the skopt process')
parser.add_argument('--hyper-opt', dest='hyper_opt', default='bayesian', choices=['bayesian','genetic'],
help='The algorithm to use for the hyper paramater optimization')
parser.add_argument('--ga-populations', help='population size for genetic algorithm',
default=10, type=int, dest='population')
parser.add_argument('--previous-result', help='Load the optimizer state from a previous run', default=None,dest='previous_state')
parser.add_argument('--target-objective', type=float, default=None,dest='target_objective',
help='A value to reach and stop in the parameter optimisation')
parser.add_argument('--example', default='mnist', choices=['topclass','mnist','gan','cifar10'])
parser.add_argument('--torch', action='store_true',
help='Use PyTorch instead of (default) Keras')
return parser
if __name__ == '__main__':
print ("Process is on",socket.gethostname())
parser = make_parser()
args = parser.parse_args()
check_sanity(args)
import socket
host = os.environ.get('HOST',os.environ.get('HOSTNAME',socket.gethostname()))
test = args.example
if test == 'topclass':
### topclass example
if not args.torch:
model_provider = BuilderFromFunction( model_fn = models.make_topclass_model )
else:
model_provider = TorchBuilderFromFunction( model_fn = models.make_topclass_torch_model )
if 'daint' in host:
train_list = glob.glob('/scratch/snx3000/vlimant/data/LCDJets_Remake/train/*.h5')
val_list = glob.glob('/scratch/snx3000/vlimant/data/LCDJets_Remake/val/*.h5')
elif 'titan' in host:
train_list = glob.glob('/ccs/proj/csc291/DATA/LCDJets_Abstract_IsoLep_lt_20/train/*.h5')
val_list = glob.glob('/ccs/proj/csc291/DATA/LCDJets_Abstract_IsoLep_lt_20/val/*.h5')
else:
train_list = glob.glob('/bigdata/shared/LCDJets_Abstract_IsoLep_lt_20/train/0*.h5')
val_list = glob.glob('/bigdata/shared/LCDJets_Abstract_IsoLep_lt_20/val/0*.h5')
features_name='Images'
labels_name='Labels'
elif test == 'mnist':
### mnist example
if args.torch:
model_provider = TorchBuilderFromFunction( model_fn = models.make_mnist_torch_model)
else:
model_provider = BuilderFromFunction( model_fn = models.make_mnist_model)
if 'daint' in host:
all_list = glob.glob('/scratch/snx3000/vlimant/data/mnist/*.h5')
elif 'titan' in host:
all_list = glob.glob('/ccs/proj/csc291/DATA/mnist/*.h5')
else:
all_list = glob.glob('/bigdata/shared/mnist/*.h5')
l = int( len(all_list)*0.70)
train_list = all_list[:l]
val_list = all_list[l:]
features_name='features'
labels_name='labels'
elif test == 'cifar10':
### cifar10 example
model_provider = BuilderFromFunction( model_fn = models.make_cifar10_model )
if 'daint' in host:
all_list = []
elif 'titan' in host:
all_list = glob.glob('/ccs/proj/csc291/DATA/cifar10/*.h5')
else:
all_list = glob.glob('/bigdata/shared/cifar10/*.h5')
l = int( len(all_list)*0.70)
train_list = all_list[:l]
val_list = all_list[l:]
features_name='features'
labels_name='labels'
elif test == 'gan':
### the gan example
model_provider = GANBuilder( parameters = [ Integer(50,400, name='latent_size' ),
Real(0.0, 1.0, name='discr_drop_out'),
Categorical([1, 2, 5, 6, 8], name='gen_weight'),
Categorical([0.1, 0.2, 1, 2, 10], name='aux_weight'),
Categorical([0.1, 0.2, 1, 2, 10], name='ecal_weight'),
]
)
## only this mode functions
args.easgd = True
args.worker_optimizer = 'rmsprop'
if 'daint' in host:
all_list = glob.glob('/scratch/snx3000/vlimant/data/3DGAN/*.h5')
elif 'titan' in host:
all_list = glob.glob('/ccs/proj/csc291/DATA/3DGAN/*.h5')
else:
all_list = glob.glob('/data/shared/3DGAN/*.h5')
#l = int( len(all_list)*0.70)
#train_list = all_list[:l]
#val_list = all_list[l:]
N= MPI.COMM_WORLD.Get_size()
train_list = all_list[:N]
val_list = all_list[-1:]
features_name='X'
labels_name='y'
print (len(train_list),"train files",len(val_list),"validation files")
print("Initializing...")
comm_world = MPI.COMM_WORLD.Dup()
## consistency check to make sure everything is appropriate
num_blocks, left_over = divmod( (comm_world.Get_size()-1), args.block_size)
if left_over:
print ("The last block is going to be made of {} nodes, make inconsistent block size {}".format( left_over,
args.block_size))
num_blocks += 1 ## to accoun for the last block
if left_over<2:
print ("The last block is going to be too small for mpi_learn, with no workers")
sys.exit(1)
block_num = get_block_num(comm_world, args.block_size)
device = mm.get_device(comm_world, num_blocks)
backend = 'tensorflow'
hide_device = True
if hide_device:
os.environ['CUDA_VISIBLE_DEVICES'] = device[-1] if 'gpu' in device else ''
print ('set to device',os.environ['CUDA_VISIBLE_DEVICES'])
if not args.torch:
import keras.backend as K
gpu_options=K.tf.GPUOptions(
per_process_gpu_memory_fraction=0.1,
allow_growth = True,
visible_device_list = device[-1] if 'gpu' in device else '')
if hide_device:
gpu_options=K.tf.GPUOptions(
per_process_gpu_memory_fraction=0.0,
allow_growth = True,)
K.set_session( K.tf.Session( config=K.tf.ConfigProto(
allow_soft_placement=True, log_device_placement=False,
gpu_options=gpu_options
) ) )
else:
import torch
if 'gpu' in device and not hide_device:
torch.cuda.set_device(int(device[-1]))
if 'gpu' in device:
model_provider.gpus=1
print("Process {} using device {}".format(comm_world.Get_rank(), device))
comm_block = comm_world.Split(block_num)
print ("Process {} sees {} blocks, has block number {}, and rank {} in that block".format(comm_world.Get_rank(),
num_blocks,
block_num,
comm_block.Get_rank()
))
if args.n_process>1:
t_b_processes= []
if block_num !=0:
_,_, b_processes = mm.get_groups(comm_block, args.n_master, args.n_process)
## collect all block=>world rank translation
r2r = (comm_block.Get_rank() , comm_world.Get_rank())
all_r2r = comm_block.allgather( r2r )
translate = dict( all_r2r ) #key is the rank in block, value is rank in world
t_b_processes = []
for pr in b_processes:
t_pr = []
for p in pr:
t_pr.append( translate[p])
t_b_processes.append( t_pr )
#need to collect all the processes lists
all_t_b_processes = comm_world.allgather( t_b_processes )
w_processes = set()
for gb in all_t_b_processes:
if gb:
hgb = map(tuple, gb)
w_processes.update( hgb )
if block_num == 0:
print ("all collect processes",w_processes)
## now you have the ranks that needs to be initialized in rings.
# MPI process 0 coordinates the Bayesian optimization procedure
if block_num == 0:
opt_coordinator = coordinator.Coordinator(comm_world, num_blocks,
model_provider.parameters,
(args.hyper_opt=='genetic'),args.population)
if args.previous_state: opt_coordinator.load(args.previous_state)
if args.target_objective: opt_coordinator.target_fom = args.target_objective
opt_coordinator.label = args.label
opt_coordinator.run(num_iterations=args.num_iterations)
opt_coordinator.record_details()
else:
print ("Process {} on block {}, rank {}, create a process block".format( comm_world.Get_rank(),
block_num,
comm_block.Get_rank()))
data = H5Data(batch_size=args.batch,
cache = args.caching_dir,
preloading = args.data_preload,
features_name=features_name,
labels_name=labels_name
)
print('found data')
data.set_file_names( train_list )
print('set file names')
validate_every = int(data.count_data()/args.batch )
print('validate every')
print (data.count_data(),"samples to train on")
if args.easgd:
algo = Algo(None, loss=args.loss, validate_every=validate_every,
mode='easgd', sync_every=args.sync_every,
worker_optimizer=args.worker_optimizer,
elastic_force=args.elastic_force/(comm_block.Get_size()-1),
elastic_lr=args.elastic_lr,
elastic_momentum=args.elastic_momentum)
else:
algo = Algo(args.optimizer,
loss=args.loss,
validate_every=validate_every,
sync_every=args.sync_every,
worker_optimizer=args.worker_optimizer
)
os.environ['KERAS_BACKEND'] = backend
#import_keras()
block = process_block.ProcessBlock(comm_world, comm_block, algo, data, device,
model_provider,
args.epochs, train_list, val_list,
folds = args.n_fold,
num_masters = args.n_master,
num_process = args.n_process,
verbose=args.verbose,
early_stopping=args.early_stopping,
target_metric=args.target_metric,
monitor=args.monitor)
block.label = args.label
block.run()