-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquantum_forge.py
329 lines (279 loc) · 13 KB
/
quantum_forge.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import gymnasium as gym
from gymnasium import spaces
import numpy as np
import matplotlib.pyplot as plt
from typing import Dict, List, Tuple, Optional
from dataclasses import dataclass
@dataclass
class HardwareConstraints:
connectivity_map: Dict[int, List[int]] # Qubit connectivity
gate_times: Dict[str, float] # Gate execution times
error_rates: Dict[Tuple[int, int], float] # Two-qubit gate error rates
max_parallel_gates: int # Maximum parallel gate operations
class QuantumForgeEnv(gym.Env):
def __init__(self, num_qubits=3, backend='qiskit', noise_level=0.01,
hardware_constraints: Optional[HardwareConstraints] = None,
optimization_metric='weighted'):
super(QuantumForgeEnv, self).__init__()
self.num_qubits = num_qubits
self.backend = backend.lower()
self.noise_level = noise_level
self.hardware_constraints = hardware_constraints
self.optimization_metric = optimization_metric
if self.backend not in ['qiskit', 'cirq']:
raise ValueError("Backend must be either 'qiskit' or 'cirq'")
self.circuit = None
self.target_state = None
self.parallel_layers = [] # Track parallel gate operations
# Extended action space with additional quantum operations
# (operation, qubit1, qubit2, parameter1, parameter2)
self.action_space = spaces.Box(
low=np.array([0, 0, 0, -np.pi, -np.pi]),
high=np.array([9, num_qubits-1, num_qubits-1, np.pi, np.pi]),
dtype=np.float32
)
# Enhanced observation space including hardware state
obs_dim = 2**num_qubits * 2 # Complex amplitudes
if hardware_constraints:
obs_dim += len(hardware_constraints.connectivity_map) # Add connectivity state
self.observation_space = spaces.Box(
low=-1, high=1, shape=(obs_dim,), dtype=np.float32
)
self._setup_backend()
self._initialize_cost_metrics()
def _setup_backend(self):
if self.backend == 'qiskit':
from qiskit import QuantumCircuit
from qiskit.quantum_info import state_fidelity, random_statevector
from qiskit import Aer, execute
from qiskit.providers.aer.noise import NoiseModel
from qiskit.providers.aer.noise.errors import depolarizing_error, thermal_relaxation_error
self.QuantumCircuit = QuantumCircuit
self.state_fidelity = state_fidelity
self.random_statevector = random_statevector
self.backend_simulator = Aer.get_backend('qasm_simulator')
self.execute = execute
# Enhanced noise model
self.noise_model = NoiseModel()
self.noise_model.add_all_qubit_quantum_error(
depolarizing_error(self.noise_level, 1), ['u1', 'u2', 'u3']
)
# Add T1/T2 relaxation noise
self.noise_model.add_all_qubit_quantum_error(
thermal_relaxation_error(t1=50.0, t2=70.0, time=0.1),
['u1', 'u2', 'u3', 'cx']
)
elif self.backend == 'cirq':
import cirq
self.QuantumCircuit = cirq.Circuit
self.state_fidelity = cirq.fidelity
self.random_statevector = lambda dim: cirq.testing.random_state_vector(dim, random_state=np.random).astype(np.complex128)
# Enhanced noise simulation
noise_ops = [
cirq.depolarize(p=self.noise_level),
cirq.amplitude_damp(gamma=0.1),
cirq.phase_damp(gamma=0.05)
]
self.backend_simulator = cirq.DensityMatrixSimulator(noise=noise_ops)
def _initialize_cost_metrics(self):
self.cost_metrics = {
'gate_count': 1.0,
'circuit_depth': 0.5,
'two_qubit_gate_count': 2.0,
'hardware_compliance': 1.5,
'execution_time': 1.0
}
def reset(self, seed=None):
super().reset(seed=seed)
if self.backend == 'qiskit':
self.circuit = self.QuantumCircuit(self.num_qubits)
elif self.backend == 'cirq':
self.circuit = self.QuantumCircuit()
self.target_state = self.random_statevector(2**self.num_qubits)
self.parallel_layers = []
return self._get_observation(), {}
def step(self, action):
operation, qubit1, qubit2, param1, param2 = action
operation = int(operation)
qubit1 = int(qubit1)
qubit2 = int(qubit2)
# Check hardware constraints
if self.hardware_constraints and not self._check_hardware_constraints(qubit1, qubit2, operation):
return self._get_observation(), -1.0, True, False, {'error': 'Hardware constraints violated'}
if self.backend == 'qiskit':
self._apply_qiskit_operation(operation, qubit1, qubit2, param1, param2)
elif self.backend == 'cirq':
self._apply_cirq_operation(operation, qubit1, qubit2, param1, param2)
obs = self._get_observation()
reward = self._calculate_reward()
done = self._check_termination()
return obs, reward, done, False, self._get_info()
def _apply_qiskit_operation(self, operation, qubit1, qubit2, param1, param2):
# Extended quantum operations
if operation == 0:
self.circuit.x(qubit1)
elif operation == 1:
self.circuit.z(qubit1)
elif operation == 2:
self.circuit.h(qubit1)
elif operation == 3:
self.circuit.ry(param1, qubit1)
elif operation == 4:
self.circuit.cx(qubit1, qubit2)
elif operation == 5:
self.circuit.cz(qubit1, qubit2)
elif operation == 6:
self.circuit.rxx(param1, qubit1, qubit2) # Ising XX coupling
elif operation == 7:
self.circuit.rzz(param1, qubit1, qubit2) # Ising ZZ coupling
elif operation == 8:
self.circuit.cp(param1, qubit1, qubit2) # Controlled phase rotation
elif operation == 9:
# Arbitrary single-qubit rotation (U3 gate)
self.circuit.u(param1, param2, 0, qubit1)
def _apply_cirq_operation(self, operation, qubit1, qubit2, param1, param2):
q1 = cirq.LineQubit(qubit1)
q2 = cirq.LineQubit(qubit2)
# Extended quantum operations for Cirq
ops = {
0: cirq.X(q1),
1: cirq.Z(q1),
2: cirq.H(q1),
3: cirq.ry(param1).on(q1),
4: cirq.CNOT(q1, q2),
5: cirq.CZ(q1, q2),
6: cirq.XXPowGate(exponent=param1/np.pi)(q1, q2),
7: cirq.ZZPowGate(exponent=param1/np.pi)(q1, q2),
8: cirq.CZPowGate(exponent=param1/np.pi)(q1, q2),
9: cirq.PhasedXPowGate(
phase_exponent=param2/np.pi,
exponent=param1/np.pi
)(q1)
}
if operation in ops:
self.circuit.append(ops[operation])
def _check_hardware_constraints(self, qubit1, qubit2, operation) -> bool:
if not self.hardware_constraints:
return True
# Check connectivity
if operation in [4, 5, 6, 7, 8]: # Two-qubit gates
if qubit2 not in self.hardware_constraints.connectivity_map.get(qubit1, []):
return False
# Check parallel gate limit
if len(self.parallel_layers[-1]) if self.parallel_layers else 0 >= self.hardware_constraints.max_parallel_gates:
return False
return True
def _calculate_reward(self):
current_state = self._get_observation()[:2**self.num_qubits] + 1j * self._get_observation()[2**self.num_qubits:]
# State fidelity
if self.backend == 'qiskit':
fidelity = self.state_fidelity(current_state, self.target_state)
elif self.backend == 'cirq':
fidelity = self.state_fidelity(current_state, self.target_state)
# Calculate costs based on optimization metric
costs = 0
if self.optimization_metric == 'weighted':
costs = (
self.cost_metrics['gate_count'] * len(self.circuit) +
self.cost_metrics['circuit_depth'] * self._calculate_depth() +
self.cost_metrics['two_qubit_gate_count'] * self._count_two_qubit_gates() +
self.cost_metrics['hardware_compliance'] * self._calculate_hardware_compliance() +
self.cost_metrics['execution_time'] * self._estimate_execution_time()
)
return fidelity - 0.01 * costs
def _calculate_depth(self) -> int:
if self.backend == 'qiskit':
return self.circuit.depth()
return len(self.parallel_layers)
def _count_two_qubit_gates(self) -> int:
count = 0
if self.backend == 'qiskit':
for instruction in self.circuit.data:
if len(instruction.qubits) == 2:
count += 1
else:
for moment in self.circuit.moments:
count += sum(1 for op in moment if len(op.qubits) == 2)
return count
def _calculate_hardware_compliance(self) -> float:
if not self.hardware_constraints:
return 0.0
violations = 0
if self.backend == 'qiskit':
for instruction in self.circuit.data:
if len(instruction.qubits) == 2:
q1, q2 = instruction.qubits
if q2.index not in self.hardware_constraints.connectivity_map.get(q1.index, []):
violations += 1
return violations
def _estimate_execution_time(self) -> float:
if not self.hardware_constraints or not self.hardware_constraints.gate_times:
return 0.0
total_time = 0.0
if self.backend == 'qiskit':
for instruction in self.circuit.data:
gate_name = instruction.operation.name
total_time += self.hardware_constraints.gate_times.get(gate_name, 0.0)
return total_time
def _get_observation(self):
if self.backend == 'qiskit':
job = self.execute(self.circuit, self.backend_simulator, noise_model=self.noise_model, shots=1000)
counts = job.result().get_counts()
probabilities = np.zeros(2**self.num_qubits)
for bitstring, count in counts.items():
index = int(bitstring, 2)
probabilities[index] = count / 1000
statevector = np.sqrt(probabilities)
elif self.backend == 'cirq':
result = self.backend_simulator.simulate(self.circuit)
statevector = result.final_state_vector
obs = np.concatenate([statevector.real, statevector.imag]).astype(np.float32)
# Add hardware state if constraints are present
if self.hardware_constraints:
hardware_state = self._get_hardware_state()
obs = np.concatenate([obs, hardware_state])
return obs
def _get_hardware_state(self) -> np.ndarray:
if not self.hardware_constraints:
return np.array([])
# Create a binary vector representing qubit connectivity availability
state = []
for q1 in range(self.num_qubits):
for q2 in self.hardware_constraints.connectivity_map.get(q1, []):
state.append(1.0 if q2 < self.num_qubits else 0.0)
return np.array(state, dtype=np.float32)
def _get_info(self) -> dict:
return {
'circuit_depth': self._calculate_depth(),
'two_qubit_gate_count': self._count_two_qubit_gates(),
'hardware_violations': self._calculate_hardware_compliance(),
'estimated_execution_time': self._estimate_execution_time()
}
def _check_termination(self) -> bool:
# Enhanced termination conditions
if len(self.circuit) >= 30: # Maximum circuit length
return True
if self._calculate_hardware_compliance() > 5: # Too many hardware violations
return True
if self._estimate_execution_time() > 1000: # Time limit exceeded
return True
return False
def render(self, mode='human'):
if mode == 'human':
print(self.circuit)
elif mode == 'rgb_array':
return self._render_state()
def _render_state(self):
state = self._get_observation()[:2**self.num_qubits]
fig, ax = plt.subplots(figsize=(10, 5))
ax.bar(range(len(state)), state)
ax.set_xlabel('Basis State')
ax.set_ylabel('Amplitude')
ax.set_title('Quantum State Visualization')
fig.canvas.draw()
img = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
img = img.reshape(fig.canvas.get_width_height()[::-1] + (3,))
plt.close(fig)
return img
def close(self):
pass