-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtrain.py
379 lines (291 loc) · 15.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
SEED = 32000
import argparse
import os
import glob
def parseArg():
global SEED
parser = argparse.ArgumentParser()
parser.add_argument("-m", "--mode", help="Training mode scheme - two stage (ts) is the default"
, required=False, choices = ['end2end-backbone', 'end2end-tps', 'end2end-full', 'ts1', 'ts2', 'ts-fl'], default = 'ts1')
parser.add_argument("-dpath", "--datapath", help="Dataset path."
, required=False, default = './dataset/*/images/*.jpg')
parser.add_argument("-log", "--logdir", help="Output path where results will be saved."
, required=False, default = './logdir')
parser.add_argument("-s", "--save", help="Path for saving model"
, required=False, default = './logdir')
parser.add_argument("--dry_run", help="Sanity check, overfit the training loop without saving anything"
, action = 'store_true')
parser.add_argument("-gpu", "--gpu", help="GPU number"
, required=False, default = None)
parser.add_argument("-pre", "--pretrained", help="Pretrained network path for second stage"
, required=False, default = None)
args = parser.parse_args()
if args.mode == 'ts2' or args.mode=='ts-fl':
if not os.path.exists(args.pretrained):
raise RuntimeError('invalid pretrained path -- it is required for second stage;')
if args.logdir is not None and not os.path.exists(args.logdir):
raise RuntimeError(args.logdir + ' does not exist! Please create the logdir')
if not args.dry_run and args.save is None:
raise RuntimeError('choose a location to save the models')
if not args.dry_run and not os.path.exists(args.save):
raise RuntimeError(args.save + ' does not exist!')
if len( glob.glob(args.datapath)) == 0:
raise RuntimeError(args.datapath + ': no images found')
if args.gpu is not None:
os.environ['CUDA_VISIBLE_DEVICES']=args.gpu # "0,1" or "0" for example
if args.mode=='ts2' or args.mode=='ts-fl':
SEED=64000
return args
args = parseArg()
print(SEED)
import os
import random
os.environ['PYTHONHASHSEED']=str(SEED)
import torch
from torch import nn
from torch import optim
import torch.nn.functional as F
import math
import pdb, tqdm
import torchvision.transforms as transforms
import kornia
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
from modules.models.DALF import *
from modules.dataset.augmentation import *
from modules.losses import *
from modules.utils import *
from modules.tensorboard_utils import *
torch.manual_seed(SEED)
np.random.seed(SEED)
random.seed(SEED)
def check_dir(f):
if not os.path.exists(f):
os.makedirs(f)
def train(args):
'''
This function implements custom training loop and different training strategies
for the DEAL detector & descriptor, alongside the custom losses for joint detection
and description of deformation-aware keypoints.
For detailed discussion please refer to the paper.
All hyperparams defined here were used for the experiments in the paper
'''
###### Prepare model, data and hyperparms #######
if not torch.cuda.is_available():
raise RuntimeError('Do you really want to train without a GPU? Then comment out this if')
dev = torch.device('cuda')
experiment_name = args.mode
if args.mode == 'end2end-backbone' or args.mode == 'ts1':
batch_size = 12
steps = 80_000 if not args.dry_run else 1000
lr = 1e-3
else:
#reduce batch size due to memory constraints
batch_size = 6
steps = 95_001 if not args.dry_run else 1000
lr = 2e-4
if args.mode == 'end2end-backbone':
backbone_nfeats = 128
else:
backbone_nfeats = 64
num_grad_accs = 4 # this performs grad accumulation to simulate larger batch size, set to 1 to disable;
if args.dry_run:
batch_size = 2
augmentor = AugmentationPipe(device = dev,
img_dir = args.datapath,
max_num_imgs = 3_000 if not args.dry_run else 32, #Limit number of images in training, original impl is 5000
num_test_imgs = 100,
out_resolution = (300, 200), #300,200
batch_size = batch_size
)
logger = TrainLogger(logdir = args.logdir, name = experiment_name)
img = augmentor.sample_img
if args.mode == 'ts2' or args.mode == 'ts-fl':
print('loading pretrained net...')
extractor = DALF_extractor(args.pretrained)
if args.mode == 'ts-fl':
print('adding fusion layer...')
extractor.net.fusion_layer = nn.Sequential(nn.Linear(128, 128), nn.ReLU(),
nn.Linear(128, 128), nn.Sigmoid())
extractor.net.mode = args.mode
net = extractor.net.to(dev).train()
#Freeze encoder layers
for param in net.net.encoder.parameters():
param.requires_grad = False
for param in net.net.features.parameters():
param.requires_grad = False
else:
net = DEAL(enc_channels = [1, 32, 64, backbone_nfeats], fixed_tps = False, mode = args.mode).to(dev).train()
#print(net)
get_nb_trainable_params(net)
fp_penalty = 0. #-1e-7 #-0.25
kp_penalty = -7e-5 #-7e-5 #-0.03
T = 7. # inv of softmax temperature
###### Training Loop #######
opt = optim.Adam(filter(lambda x: x.requires_grad, net.parameters()) , lr = lr)
# scheduler = torch.optim.lr_scheduler.StepLR(opt, step_size=500, gamma=0.8)
dense_matcher = DenseMatcher()
matcher = Matcher()
net.train()
fig = plt.figure(figsize = (8, 6), dpi = 100)
p1, p2, Hs = make_batch_sfm(augmentor, 0.2)
opt.zero_grad()
with tqdm.tqdm(total=steps) as pbar:
for i in range(steps):
if i < steps/3:
alpha = (3*i/steps)
#Increase augmentation difficulty during training using simple schedule rule
if i < steps * 0.1:
difficulty = 0.10
elif i < steps * 0.2:
difficulty = 0.15
elif i < steps * 0.6:
difficulty = 0.25
else:
difficulty = 0.30
#Initialize vars for current step
#We need to handle batching because the description can have arbitrary number of keypoints
mean_correct = 0
dense_correct = 0
loss = None
loss_kp = None
hard_loss = None
pdesc1 = None
pdesc2 = None
pdesc1r = None
pdesc2r = None
pdesc1nr = None
pdesc2nr = None
ssimloss = None
l_ssimloss = None
small_desc1 = None
small_desc2 = None
good_matches = torch.tensor([True])
kpts1, kpts2 = None, None
acc = []
pos_count = 0
pos_indexes = [0]
if not args.dry_run:
p1, p2, Hs = make_batch_sfm(augmentor, difficulty)
kpts1, out1 = net(p1, return_tensors = True)
kpts2, out2 = net(p2, return_tensors = True)
for b in range(batch_size):
#ignore samples that have too few keypoints to avoid singularities
if kpts1[b]['patches'] is None or kpts2[b]['patches'] is None \
or len(kpts1[b]['xy']) < 16 or len(kpts2[b]['xy']) < 16:
print('skipping batch item...')
continue
idx, patches1, patches2 = get_positive_corrs(kpts1[b], kpts2[b], Hs[b], augmentor, i)
if len(patches1) >=16:
#only distinct
if args.mode == 'end2end-backbone' or args.mode == 'ts1':
l_pdesc1 = F.normalize(net.sample_descs(out1['feat'][b], kpts1[b]['xy'][idx[:,0],:], H = p1.shape[2], W = p1.shape[3]))
l_pdesc2 = F.normalize(net.sample_descs(out2['feat'][b], kpts2[b]['xy'][idx[:,1],:], H = p2.shape[2], W = p2.shape[3]))
pdesc1 = l_pdesc1 if pdesc1 is None else torch.vstack((pdesc1, l_pdesc1))
pdesc2 = l_pdesc2 if pdesc2 is None else torch.vstack((pdesc2, l_pdesc2))
else:
nrdesc1 = net.hardnet(patches1); nrdesc2 = net.hardnet(patches2)
#distinct & invariant
if args.mode != 'end2end-tps':
rdesc1 = net.sample_descs(out1['feat'][b], kpts1[b]['xy'][idx[:,0],:], H = p1.shape[2], W = p1.shape[3])
rdesc2 = net.sample_descs(out2['feat'][b], kpts2[b]['xy'][idx[:,1],:], H = p2.shape[2], W = p2.shape[3])
if args.mode == 'ts-fl':
l_pdesc1 = torch.cat((nrdesc1, rdesc1), dim=1)
l_pdesc2 = torch.cat((nrdesc2, rdesc2), dim=1)
l_pdesc1 = F.normalize( net.fusion_layer( l_pdesc1 ) * l_pdesc1)
l_pdesc2 = F.normalize( net.fusion_layer( l_pdesc2 ) * l_pdesc2)
else:
l_pdesc1 = F.normalize( torch.cat((nrdesc1, rdesc1), dim=1) )
l_pdesc2 = F.normalize( torch.cat((nrdesc2, rdesc2), dim=1) )
pdesc1 = l_pdesc1 if pdesc1 is None else torch.vstack((pdesc1, l_pdesc1))
pdesc2 = l_pdesc2 if pdesc2 is None else torch.vstack((pdesc2, l_pdesc2))
l_pdesc1_nrigid = F.normalize(nrdesc1)
l_pdesc2_nrigid = F.normalize(nrdesc2)
pdesc1nr = l_pdesc1_nrigid if pdesc1nr is None else torch.vstack((pdesc1nr, l_pdesc1_nrigid))
pdesc2nr = l_pdesc2_nrigid if pdesc2nr is None else torch.vstack((pdesc2nr, l_pdesc2_nrigid))
#full invariant
else:
l_pdesc1 = F.normalize(nrdesc1)
l_pdesc2 = F.normalize(nrdesc2)
pdesc1 = l_pdesc1 if pdesc1 is None else torch.vstack((pdesc1, l_pdesc1))
pdesc2 = l_pdesc2 if pdesc2 is None else torch.vstack((pdesc2, l_pdesc2))
with torch.no_grad():
good_matches = torch.argmin(torch.cdist(l_pdesc1, l_pdesc2), dim=1) == torch.arange(len(l_pdesc1),
device = l_pdesc1.device)
acc.append(good_matches.sum().item()/len(good_matches))
l_ssimloss = SSIMLoss(patches1, patches2)
#l_ssimloss = regularized_SSIM_loss(patches1, patches2)
dense_kp_logprobs = kpts1[b]['logprobs'].view(-1,1) + kpts2[b]['logprobs'].view(1,-1)
dense_logprobs = dense_kp_logprobs
dense_rewards, dense_rwd_sum = get_dense_rewards(kpts1[b]['xy'], kpts2[b]['xy'], Hs[b], augmentor,
penalty = fp_penalty * alpha)
if i > 0.75 * steps and not args.mode == 'ts1': #penalyze wrong matches
with torch.no_grad():
if len(good_matches) == len(idx):
idx = idx[~good_matches]
dense_rewards[idx[:, 0]] = kp_penalty*10. # 10. 25.
dense_correct+= dense_rwd_sum
pos_count += len(patches1)
pos_indexes.append(pos_count)
loss_vals = (dense_rewards * dense_logprobs).view(-1)
ssimloss = l_ssimloss if ssimloss is None else torch.hstack((l_ssimloss, ssimloss))
loss = loss_vals if loss is None else torch.hstack((loss, loss_vals))
current_loss_kp = (kpts1[b]['logprobs'] * torch.full_like(kpts1[b]['logprobs'], kp_penalty*alpha)).mean() + \
(kpts2[b]['logprobs'] * torch.full_like(kpts2[b]['logprobs'], kp_penalty*alpha)).mean()
loss_kp = current_loss_kp if loss_kp is None else torch.hstack((loss_kp, current_loss_kp))
det_kpts1 = len(kpts1[b]['xy'])
det_kpts2 = len(kpts2[b]['xy'])
#Plot every x steps
if len(patches1) >=16 and i % 200 == 0:
plt.draw() ; #plt.show()
np_fig = grab_mpl_fig(fig)
logger.log_fig(i, np_fig, 'Gradient Flows')
fig = plot_grid( (patches1[:16], patches2[:16]) )
plt.draw(); np_fig = grab_mpl_fig(fig)
logger.log_fig(i, np_fig, 'Warped Patches')
fig = plt.figure(figsize = (8, 6), dpi = 100)
print('difficulty %.3f'%(difficulty))
#loss = -loss.mean() #average across batch
loss = -(loss.mean() + loss_kp.mean())
#hard_loss = hard_loss.mean()
hard_loss = hardnet_loss(pdesc1, pdesc2) if pdesc1 is not None else None
hard_loss_nrigid = hardnet_loss(pdesc1nr, pdesc2nr) if pdesc1nr is not None else None
if hard_loss is not None and hard_loss_nrigid is not None:
hard_loss += hard_loss_nrigid
hard_loss /= 2.
elif hard_loss_nrigid is not None:
hard_loss = hard_loss_nrigid
if hard_loss is not None:
loss += 0.005 * hard_loss
#if ssimloss is not None:
# loss += 0.05 * ssimloss.mean()
pbar.set_description('L: {:.4f} - Det: ({:d}, {:d}), #rwd: {:.0f}/{:d}, #dRwd: {:.1f} #HL: {:.3f} ssimL: {:.3f}'.format( loss.item(),
det_kpts1, det_kpts2, good_matches.sum(), len(good_matches), dense_correct/batch_size,
hard_loss.item() if hard_loss is not None else 0.,
ssimloss.mean().item()*2. if ssimloss is not None else 0.))
pbar.update(1)
#backward pass
loss /= num_grad_accs
loss.backward()
if i%10 == 0:
plot_grad_flow(net.named_parameters())
#[print(i) for i in net.named_parameters()]
if i%num_grad_accs == 0:
opt.step()
opt.zero_grad()
logger.log_scalars(i, avg_det = (det_kpts1 + det_kpts2)/2.,
acc = np.array(acc).mean() if len(acc) > 0 else 0.,
inliers = good_matches.sum(),
kp_rewards = dense_correct/batch_size,
hard_loss = hard_loss.item() if i > 150 and hard_loss is not None else 0.,
ssim_loss = ssimloss.mean().item()*2. if i > 150 and ssimloss is not None else 0.)
if i%5000 == 0:
if not args.dry_run:
torch.save(net.state_dict(), args.save + '/model_' + args.mode + '_%06d'%i + '.pth')
# scheduler.step()
#save the model
#if not args.dry_run:
torch.save(net.state_dict(), args.save + '/model_' + args.mode + '_' + str(i+1) + '_final' + '.pth')
if __name__ == '__main__':
train(args)