-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtime_series_prediction.py
344 lines (243 loc) · 10.7 KB
/
time_series_prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
from __future__ import print_function
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D, Activation, GaussianNoise
from keras import regularizers
from keras import backend as K
import keras.optimizers as optimizers
from keras.regularizers import *
import numpy as np
from keras.callbacks import EarlyStopping, ModelCheckpoint, LearningRateScheduler, ReduceLROnPlateau
import csv
import Utils
np.random.seed(0)
class ErrorsCallback(keras.callbacks.Callback):
def __init__(self, val_in, val_out, train_in, train_out, test_in, test_out):
self.val_in = val_in
self.val_out = val_out
self.train_in = train_in
self.train_out = train_out
self.test_in = test_in
self.test_out = test_out
self.mse_train = []
self.mse_val = []
self.mse_test = []
def on_epoch_end(self, epoch, logs={}):
self.mse_val.append(self.model.evaluate(self.val_in, self.val_out, verbose=0))
self.mse_train.append(self.model.evaluate(self.train_in, self.train_out, verbose=0))
self.mse_test.append(self.model.evaluate(self.test_in, self.test_out, verbose=0))
def mackey_glass_time_series(length, noise=0):
beta = 0.2
gamma = 0.1
n = 10
tau = 25
x = np.zeros(length)
x[0] = 1.5
for i in range(0, length - 1):
x[i + 1] = x[i] + (beta * x[i - tau]) / (1 + x[i - tau] ** n) - gamma * x[i]
# if noise > 0:
# x[i+1] += np.random.normal(0, noise, 1)
return x
def add_noise_to_dataset(dataset, noise):
dataset += np.random.normal(0, noise, np.shape(dataset))
return dataset
def write_to_Csv(dictionary):
with open('parameters_1layer.csv', 'a', newline='') as csvfile:
fieldnames = dictionary.keys()
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
writer.writeheader()
writer.writerow(dictionary)
def get_data(input, output):
X_train = input[0:900, :]
X_val = input[900:1000, :]
X_test = input[1000:1200, :]
Y_train = output[0:900]
Y_val = output[900:1000]
Y_test = output[1000:1200]
return X_val, Y_val, X_train, Y_train, X_test, Y_test
def create_mackey_glass_dataset(times, noise=0):
start = 301
end = 1501
rows = end - start
columns = len(times)
inputs = np.zeros((rows, columns))
sequence = mackey_glass_time_series(end + 5, noise)
for i, time in enumerate(times):
inputs[:, i] = sequence[0:end][(start - time): (end - time)]
output = np.array(sequence[start + 5: end + 5])
return np.array(inputs), output.reshape(output.shape[0], 1), sequence
# 5,0.1,1,5,L2 (lr=0.01),SGD,mse,0.1182
# 5,0.1,1,5,L2 (lr=0.0001),SGD,mse,0.0727
# 5,0.1,1,10,L2 (lr=0.0001),SGD,mse,0.0427
# 20,0.1,1,10,L2 (lr=0.0001),SGD,mse,0.0276
# 20,0.1,1,10,L2 (lr=0.0001),SGD,mse,0.0399
# 50,0.1,1,10,L2 (lr=0.0001),SGD,mse,0.0291
def run_noise_nodes_experiment():
filepath = "weights.best.hdf5"
batch_size = 32
learning_rate = 0.01
opt = "SGD"
loss = 'mse'
activation = 'linear'
epochs = 200
n_layers = 2
nodes = np.arange(1,8,1)
noises = [0.03, 0.09, 0.18]
mse = []
mse_train= []
for node in nodes:
print("node : {0}".format(node))
val_mse = []
train_mse = []
for noise in noises:
input, output, time_series = create_mackey_glass_dataset([20, 15, 10, 5, 0],noise)
# Utils.plot_glass_data(time_series)
X_val, Y_val, X_train, Y_train, X_test, Y_test = get_data(input, output)
dim_2 = X_train.shape[1]
X_train = add_noise_to_dataset(X_train, noise)
if opt == 'Adam':
optimizer = optimizers.Adam(lr=0.04)
if opt == 'SGD':
optimizer = optimizers.SGD(lr=0.01, clipvalue=0.5)
else:
optimizer = optimizers.Adam(lr=0.04)
earlystop = EarlyStopping(monitor="val_loss", patience=15, verbose=0, mode='min')
checkpoint = ModelCheckpoint(filepath, monitor='val_loss', verbose=0, save_best_only=True, mode='max')
error = ErrorsCallback(X_val, Y_val, X_train, Y_train, X_test, Y_test)
callbacks = [error, earlystop, checkpoint]
regularizer = regularizers.l2(learning_rate)
regularizer_first_layer = regularizers.l2(0.0001)
model = Sequential()
# model.add(GaussianNoise(noise, input_shape=(dim_2,)))
model.add(Dense(4, input_dim=dim_2, activation=activation, kernel_regularizer=regularizer_first_layer))
# model.add(Dropout(0.10))
if n_layers == 2:
model.add(Dense(node, activation=activation, kernel_regularizer=regularizer))
# model.add(Dropout(0.10))
model.add(Dense(Y_test.shape[1]))
model.add(Activation('linear'))
model.compile(loss=loss, optimizer=optimizer)
print("Training...")
model.fit(X_train, Y_train, epochs=epochs, validation_data=(X_val, Y_val), verbose=False,
callbacks=callbacks,
batch_size=batch_size, shuffle=True)
val_mse.append(error.mse_val[-1])
train_mse.append(error.mse_train[-1])
print("Generating test predictions...")
preds = model.predict(X_test)
eval = model.evaluate(X_test, Y_test)
print(eval)
mse.append(val_mse)
mse_train.append(train_mse)
print(mse)
print(mse_train)
final_mse = np.hstack([mse, mse_train])
legend_names = ['val mse sigma 0.03', 'val mse sigma 0.09', 'val mse sigma 0.18',
'train mse sigma 0.03', 'train mse sigma 0.09', 'train mse sigma 0.18']
Utils.plot_nn_with_nodes(np.array(final_mse).T, legend_names, nodes,
'Three layers network with lr = {0}, batch = 32'.format(learning_rate))
def run_exp():
input, output, time_series = create_mackey_glass_dataset([20, 15, 10, 5, 0])
# Utils.plot_glass_data(time_series)
X_val, Y_val, X_train, Y_train, X_test, Y_test = get_data(input, output)
# X_train = add_noise_to_dataset(X_train, noise=0.09)
dim_2 = X_train.shape[1]
filepath = "weights.best.hdf5"
batch_size = 32
learning_rate = 0.0001
opt = "SGD"
loss = 'mse'
activation = 'linear'
epochs = 500
number_of_nodes_layer_1 = 4
number_of_nodes_layer_2 = 2
n_layers = 1
validation_split = 0.35
if opt == 'Adam':
optimizer = optimizers.Adam(lr=0.04)
if opt == 'SGD':
optimizer = optimizers.SGD(lr=0.01, clipvalue=0.5)
else:
optimizer = optimizers.Adam(lr=0.04)
earlystop = EarlyStopping(monitor="val_loss", patience=15, verbose=1, mode='min')
checkpoint = ModelCheckpoint(filepath, monitor='val_loss', verbose=1, save_best_only=True, mode='max')
error = ErrorsCallback(X_val, Y_val, X_train, Y_train, X_test, Y_test)
callbacks = [error, earlystop, checkpoint]
regul = "L2 (lr={0})".format(learning_rate)
regularizer = regularizers.l2(learning_rate)
model = Sequential()
model.add(Dense(number_of_nodes_layer_1, input_dim=dim_2, activation=activation, kernel_regularizer=regularizer))
# model.add(Dropout(0.10))
if n_layers == 2:
model.add(Dense(number_of_nodes_layer_2, activation=activation, kernel_regularizer=regularizer))
# model.add(Dropout(0.10))
model.add(Dense(Y_test.shape[1]))
model.add(Activation('linear'))
model.compile(loss=loss, optimizer=optimizer)
print("Training...")
model.fit(X_train, Y_train, epochs=epochs, validation_data=(X_val, Y_val), verbose=True, callbacks=callbacks,
batch_size=batch_size, shuffle=True)
print("Generating test predictions...")
preds = model.predict(X_test)
eval = model.evaluate(X_test, Y_test)
print('test',eval)
print('train')
eval_trian = model.evaluate(X_train, Y_train)
print('train',eval_trian)
print('val')
eval_val = model.evaluate(X_val, Y_val)
print('val', eval_val)
dictionary = {'Epochs': epochs, 'Val split': validation_split, 'n Layers': n_layers,
'n Nodes _layer 1': number_of_nodes_layer_1, 'n Nodes _layer 2': number_of_nodes_layer_2,
'Batch Size': batch_size, 'Regularizer': regul,
'Optimizer': opt, 'Metric': loss, 'Pred loss': round(eval, 4)}
mse = [error.mse_train, error.mse_val, error.mse_test]
legend_names = ['train', 'validation', 'test']
Utils.plot_error_with_epochs(mse, legend_names, epochs, 'Two layers network with 8 nodes ,lr = 0.0001, batch = 32')
# Utils.plot_glass_data_prediction(preds, Y_test, "Predictions")
write_to_Csv(dictionary)
# print(np.mean(error.mse_val))
def run_weights_distribution():
rates = [0.00001,0.0001, 0.001, 0.01, 0.1]
weights =[]
for learning_rate in rates:
input, output, time_series = create_mackey_glass_dataset([20, 15, 10, 5, 0])
X_val, Y_val, X_train, Y_train, X_test, Y_test = get_data(input, output)
dim_2 = X_train.shape[1]
filepath = "weights.best.hdf5"
batch_size = 32
opt = "SGD"
loss = 'mse'
activation = 'linear'
epochs = 40
number_of_nodes = 8
n_layers = 1
if opt == 'Adam':
optimizer = optimizers.Adam(lr=0.04)
if opt == 'SGD':
optimizer = optimizers.SGD(lr=0.01, clipvalue=0.5)
else:
optimizer = optimizers.Adam(lr=0.04)
earlystop = EarlyStopping(monitor="val_loss", patience=5, verbose=0, mode='min')
checkpoint = ModelCheckpoint(filepath, monitor='val_loss', verbose=0, save_best_only=True, mode='max')
error = ErrorsCallback(X_val, Y_val, X_train, Y_train, X_test, Y_test)
callbacks = [error, earlystop, checkpoint]
regularizer = regularizers.l2(learning_rate)
model = Sequential()
model.add(Dense(number_of_nodes, input_dim=dim_2, activation=activation, kernel_regularizer=regularizer))
if n_layers == 2:
model.add(Dense(number_of_nodes, activation=activation, kernel_regularizer=regularizer))
model.add(Dense(Y_test.shape[1]))
model.add(Activation('linear'))
model.compile(loss=loss, optimizer=optimizer)
print("Training...")
model.fit(X_train, Y_train, epochs=epochs, validation_data=(X_val, Y_val), verbose=False, callbacks=callbacks,
batch_size=batch_size, shuffle=True)
first_layer_weights = model.layers[0].get_weights()[0]
weights.append(first_layer_weights)
Utils.plot_weights_distribution(rates,weights)
if __name__ == "__main__":
run_noise_nodes_experiment()
# run_exp()
# run_weights_distribution()