-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplot_loss.py
62 lines (49 loc) · 1.72 KB
/
plot_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import os
import sys
import numpy as np
import gflags
import matplotlib.pyplot as plt
import matplotlib
matplotlib.style.use('ggplot')
from common_flags import FLAGS
gflags.DEFINE_string("exp_root_2", "../training/", "Folder where to take the second experiment")
def smooth(y, box_pts):
box = np.ones(box_pts)/box_pts
y_smooth = np.convolve(y, box, mode='valid')
return y_smooth
def _main():
# Read log file
log_files = [os.path.join(FLAGS.experiment_rootdir, "log.txt"),
os.path.join(FLAGS.exp_root_2, "log.txt")]
logs = []
for log_file in log_files:
try:
logs.append(np.genfromtxt(log_file, delimiter='\t',dtype=None, names=True))
except:
raise IOError("Log file not found")
train_loss_1 = logs[0]['steering_loss'][:130]
train_loss_1 = smooth(train_loss_1, 10)
train_loss_2 = logs[1]['steering_loss'][:130]
train_loss_2 = smooth(train_loss_2, 10)
timesteps = list(range(train_loss_1.shape[0]))
# Plot losses
fig = plt.figure(1, figsize=(17,8))
ax = fig.add_subplot(111)
ax.plot(timesteps, train_loss_2, 'r', timesteps, train_loss_1, 'b', linewidth=7)
plt.legend(["Random Initialization", "ImageNet Initialization"], fontsize=40)
plt.ylabel('Loss', size=45)
plt.xlabel('Epoch', size=45)
plt.yscale('log')
plt.tick_params(labelsize=35)
#plt.ylim((0,0.03))
plt.savefig(os.path.join(FLAGS.experiment_rootdir, "log.png"), bbox_inches='tight')
def main(argv):
# Utility main to load flags
try:
argv = FLAGS(argv) # parse flags
except gflags.FlagsError:
print ('Usage: %s ARGS\\n%s' % (sys.argv[0], FLAGS))
sys.exit(1)
_main()
if __name__ == "__main__":
main(sys.argv)