-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathval.py
80 lines (63 loc) · 2.23 KB
/
val.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import os
from pathlib import Path
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
os.environ["OMP_NUM_THREADS"] = "1"
os.environ["OPENBLAS_NUM_THREADS"] = "1"
os.environ["MKL_NUM_THREADS"] = "1"
os.environ["VECLIB_MAXIMUM_THREADS"] = "1"
os.environ["NUMEXPR_NUM_THREADS"] = "1"
import hydra
from omegaconf import DictConfig, OmegaConf
import pytorch_lightning as pl
from pytorch_lightning.callbacks import ModelSummary
from pytorch_lightning.loggers import CSVLogger
import torch
from modules.data_loading import DataModule
from modules.raft_spline import RAFTSplineModule
@hydra.main(config_path='config', config_name='val', version_base='1.3')
def main(config: DictConfig):
print('------ Configuration ------\n')
print(OmegaConf.to_yaml(config))
print('---------------------------\n')
OmegaConf.to_container(config, resolve=True, throw_on_missing=True)
# ------------
# GPU Options
# ------------
gpus = config.hardware.gpus
assert isinstance(gpus, int), 'no more than 1 gpu supported'
gpus = [gpus]
batch_size: int = config.batch_size
assert batch_size > 0
# ------------
# Data
# ------------
data_module = DataModule(config, batch_size_train=batch_size, batch_size_val=batch_size)
num_bins_context = data_module.get_nbins_context()
num_bins_corr = data_module.get_nbins_correlation()
print(f'num_bins:\n\tcontext: {num_bins_context}\n\tcorrelation: {num_bins_corr}')
# ---------------------
# Logging and Checkpoints
# ---------------------
logger = CSVLogger(save_dir='./validation_logs')
ckpt_path = Path(config.checkpoint)
# ------------
# Model
# ------------
module = RAFTSplineModule.load_from_checkpoint(str(ckpt_path), **{'config': config})
# ---------------------
# Callbacks and Misc
# ---------------------
callbacks = [ModelSummary(max_depth=2)]
trainer = pl.Trainer(
accelerator='gpu',
callbacks=callbacks,
default_root_dir=None,
devices=gpus,
logger=logger,
log_every_n_steps=100,
precision=32,
)
with torch.inference_mode():
trainer.validate(model=module, datamodule=data_module, ckpt_path=str(ckpt_path))
if __name__ == '__main__':
main()