-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIMAGE.m
108 lines (84 loc) · 3.16 KB
/
IMAGE.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
**static model- base conditions**
**the model has to run first in static mode to balance the stress forces where the fault cannot slip, then turn to dynamic mode
*set timer on to get the model run time on the log file
set timer on
*solve 4th order wave equation
set ord 4
*create a log file
set log on
*create a grid with x,y,z (width, heigth, length) in number of elements and element dimentions equivelently,
*when run a 2D model use a single element in z direction in meters
gr 560 400 1 2.5 2.5 2.5
*material properties for the medium
*s=shear modulus (Pa), b=bulk modulus (Pa), dens=density (kg/m^3)
prop mat=1 s=9.27e9 b=14.74e9 dens=2700
*geometry of the fault creating 7 sections, i&j are width and height coordinates,
*type 3 fault is enabling fault to slip when turn to dynamic model
stope n=1 typ=3 i=280 j=350,390
stope n=2 typ=3 i=280 j=310,350
stope n=3 typ=3 i=280 j=270,310
stope n=4 typ=3 i=280 j=230,270
stope n=5 typ=3 i=280 j=190,230
stope n=6 typ=3 i=280 j=150,190
stope n=7 typ=3 i=280 j=110,150
*fault properties kn=normal stiffness (Pa), ks=shear stiffness (Pa), fric=friction angle (degrees), coh=cohesion (Pa)
stope n=1 kn=1e6 ks=1e6 fric=30 coh=10e6
stope n=2 kn=1e6 ks=1e6 fric=30 coh=10e6
stope n=3 kn=1e6 ks=1e6 fric=40 coh=10e6
stope n=4 kn=1e6 ks=1e6 fric=40 coh=10e6
stope n=5 kn=1e6 ks=1e6 fric=40 coh=16e6
stope n=6 kn=1e6 ks=1e6 fric=30 coh=18e6
stope n=7 kn=1e6 ks=1e6 fric=30 coh=20e6
*Stress applied to the fault surface
*sign=normal stress (Pa/m) st10=shear stress (Pa/m)
stope n=1 sign=1.61e6 st10=-1.37e6
stope n=2 sign=4.82e6 st10=-4.16e6
stope n=3 sign=8.03e6 st10=-6.83e6
stope n=4 sign=11.24e6 st10=-9.55e6
stope n=5 sign=14.47e6 st10=-12.3e6
stope n=6 sign=17.68e6 st10=-15.03e6
stope n=7 sign=20.87e6 st10=-17.74e6
*fault set to slip off for the static mode
stope n=1 slip=off
stope n=2 slip=off
stope n=3 slip=off
stope n=4 slip=off
stope n=5 slip=off
stope n=6 slip=off
stope n=7 slip=off
*boundary stress due to water load applied at the top of the model
bou s22=-3.9e5 s12=0e6 i=140,180 j=401
bou s22=-6.8e5 s12=0e6 i=180,230 j=401
bou s22=-9.8e5 s12=0e6 i=230,330 j=401
bou s22=-6.8e5 s12=0e6 i=330,380 j=401
bou s22=-3.9e5 s12=0e6 i=380,420 j=401
*boundary stress rebounding force to balance the forces applied to the model
bou s22=-3.525e5 s12=0e6 i=1,561 j=1
*Mass-proportional damping is provided to absorb energy from the mesh, and improve convergence toward a static solution.
damp auto
*give a coarse indication of how the model printing the maximum grid velocity
his mx_vel dt=100
*number of cycles the model will run
cy 40000
*plot all histories
pl his all
*set dampiing off to turn the model to dynamic mode
damp off
*save model state
save
*plot dump (include stress & velocity vectors)
pl dump
*plot snapshot of normal stress
pl snap sg1
*plot snapshot of S22 stress
pl snap s22
*set friction angle to calculate the Excess Shear Stress
set uvar essfr=30
*Create a snapshot line with ESS in fault line
pl lsnap ess i=280 j=10,290
set uvar essfr=25
pl lsnap ess i=280 j=10,290
*closing the log file
set log off
name
ret