-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_GBU_pretrain.py
446 lines (368 loc) · 17.5 KB
/
train_GBU_pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
import torch
import torch.nn.functional as F
from torch.autograd import Variable
import torch.autograd as autograd
import torch.optim as optim
import torch.nn.init as init
from termcolor import cprint
from time import gmtime, strftime
import numpy as np
import argparse
import os
import glob
import random
import json
from dataset_GBU import FeatDataLayer, DATA_LOADER
from models import _netD, _netG_att,_netD2_att,_netG2_att, _param
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', default='CUB1', help='FLO')
parser.add_argument('--dataroot', default='data/GBU/',
help='path to dataset')
parser.add_argument('--matdataset', default=True, help='Data in matlab format')
parser.add_argument('--image_embedding', default='res101')
parser.add_argument('--class_embedding', default='att')
parser.add_argument('--preprocessing', action='store_true', default=False,
help='enbale MinMaxScaler on visual features')
parser.add_argument('--standardization', action='store_true', default=False)
parser.add_argument('--validation', action='store_true', default=False, help='enable cross validation mode')
parser.add_argument('--gpu', default='0', type=str, help='index of GPU to use')
parser.add_argument('--exp_idx', default='', type=str, help='exp idx')
parser.add_argument('--manualSeed', type=int, help='manual seed')
parser.add_argument('--resume', default='./out/Best_model_ZSL_Acc_56.49.tar', type=str, help='the model to resume') #./out/Best_model_ZSL_Acc_51.64.tar
parser.add_argument('--z_dim', type=int, default=100, help='dimension of the random vector z')
parser.add_argument('--disp_interval', type=int, default=20)
parser.add_argument('--save_interval', type=int, default=200)
parser.add_argument('--evl_interval', type=int, default=40)
opt = parser.parse_args()
print('Running parameters:')
print(json.dumps(vars(opt), indent=4, separators=(',', ':')))
os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpu
""" hyper-parameter """
opt.GP_LAMBDA = 10 # Gradient penalty lambda
opt.CENT_LAMBDA = 5
opt.REG_W_LAMBDA = 0.001
opt.Adv_LAMBDA = 1
opt.lr = 0.00005
opt.batchsize = 1024 # 512
""" hyper-parameter for testing"""
opt.nSample = 60 # number of fake feature for each class
opt.Knn = 20 # knn: the value of K
if opt.manualSeed is None:
opt.manualSeed = random.randint(1, 10000)
print("Random Seed: ", opt.manualSeed)
random.seed(opt.manualSeed)
torch.manual_seed(opt.manualSeed)
torch.cuda.manual_seed_all(opt.manualSeed)
def train():
param = _param()
dataset = DATA_LOADER(opt)
param.X_dim = dataset.feature_dim
data_layer = FeatDataLayer(dataset.train_label.numpy(), dataset.train_feature.numpy(), opt)
result = Result()
result_gzsl = Result()
netG = _netG_att(opt, dataset.text_dim, dataset.feature_dim).cuda()
netG.apply(weights_init)
print(netG)
netD = _netD(dataset.train_cls_num, dataset.feature_dim).cuda()
netD.apply(weights_init)
print(netD)
netG2 = _netG2_att(opt, dataset.text_dim, dataset.feature_dim).cuda()
netG2.apply(weights_init)
print(netG2)
netD2 = _netD2_att(dataset.text_dim, dataset.train_cls_num).cuda()
netD2.apply(weights_init)
print(netD2)
exp_info = 'GBU_{}'.format(opt.dataset)
exp_params = 'Eu{}_Rls{}'.format(opt.CENT_LAMBDA, opt.REG_W_LAMBDA)
out_dir = 'out/{:s}'.format(exp_info)
out_subdir = 'out/{:s}/{:s}'.format(exp_info, exp_params)
if not os.path.exists('out'):
os.mkdir('out')
if not os.path.exists(out_dir):
os.mkdir(out_dir)
if not os.path.exists(out_subdir):
os.mkdir(out_subdir)
cprint(" The output dictionary is {}".format(out_subdir), 'red')
log_dir = out_subdir + '/log_{:s}_{}.txt'.format(exp_info, opt.exp_idx)
with open(log_dir, 'w') as f:
f.write('Training Start:')
f.write(strftime("%a, %d %b %Y %H:%M:%S +0000", gmtime()) + '\n')
start_step = 0
G2D2_checkpoint = torch.load("./out/G2D2.tar")
netD2.load_state_dict(G2D2_checkpoint['state_dict_D2'])
netG2.load_state_dict(G2D2_checkpoint['state_dict_G2'])
netG2.eval()
if opt.resume:
if os.path.isfile(opt.resume):
print("=> loading checkpoint '{}'".format(opt.resume))
checkpoint = torch.load(opt.resume)
netG.load_state_dict(checkpoint['state_dict_G'])
netD.load_state_dict(checkpoint['state_dict_D'])
start_step = checkpoint['it']
print(checkpoint['log'])
else:
print("=> no checkpoint found at '{}'".format(opt.resume))
nets = [netG, netD, netD2, netD2]
tr_cls_centroid = Variable(torch.from_numpy(dataset.tr_cls_centroid.astype('float32'))).cuda()
optimizerD = optim.Adam(netD.parameters(), lr=opt.lr, betas=(0.5, 0.9))
optimizerG = optim.Adam(netG.parameters(), lr=opt.lr, betas=(0.5, 0.9))
for it in range(start_step, 20000+1):
""" Discriminator """
for _ in range(5):
blobs = data_layer.forward()
feat_data = blobs['data'] # image data
labels = blobs['labels'].astype(int) # class labels
text_feat = np.array([ dataset.train_att[i,:] for i in labels])
text_feat = Variable(torch.from_numpy(text_feat.astype('float32'))).cuda()
X = Variable(torch.from_numpy(feat_data)).cuda()
y_true = Variable(torch.from_numpy(labels.astype('int'))).cuda()
z = Variable(torch.randn(opt.batchsize, opt.z_dim)).cuda()
# GAN's D loss
D_real, C_real = netD(X)
D_loss_real = torch.mean(D_real)
C_loss_real = F.cross_entropy(C_real, y_true)
DC_loss = opt.Adv_LAMBDA * (- D_loss_real + C_loss_real)
DC_loss.backward()
# GAN's D loss
G_sample = netG(z, text_feat).detach()
D_fake, C_fake = netD(G_sample)
D_loss_fake = torch.mean(D_fake)
C_loss_fake = F.cross_entropy(C_fake, y_true)
DC_loss = opt.Adv_LAMBDA *(D_loss_fake + C_loss_fake)
DC_loss.backward()
# train with gradient penalty (WGAN_GP)
grad_penalty = opt.Adv_LAMBDA * calc_gradient_penalty(netD, X.data, G_sample.data)
grad_penalty.backward()
Wasserstein_D = D_loss_real - D_loss_fake
optimizerD.step()
reset_grad(nets)
""" Generator """
for _ in range(1):
blobs = data_layer.forward()
feat_data = blobs['data'] # image data
labels = blobs['labels'].astype(int) # class labels
text_feat = np.array([dataset.train_att[i, :] for i in labels])
text_feat = Variable(torch.from_numpy(text_feat.astype('float32'))).cuda()
X = Variable(torch.from_numpy(feat_data)).cuda()
y_true = Variable(torch.from_numpy(labels.astype('int'))).cuda()
z = Variable(torch.randn(opt.batchsize, opt.z_dim)).cuda()
G_sample = netG(z, text_feat)
D_fake, C_fake = netD(G_sample)
_, C_real = netD(X)
# GAN's G loss
G_loss = torch.mean(D_fake)
# Auxiliary classification loss
C_loss = (F.cross_entropy(C_real, y_true) + F.cross_entropy(C_fake, y_true)) / 2
GC_loss = opt.Adv_LAMBDA *(-G_loss + C_loss)
# Centroid loss
Euclidean_loss = Variable(torch.Tensor([0.0])).cuda()
if opt.REG_W_LAMBDA != 0:
for i in range(dataset.train_cls_num):
sample_idx = (y_true == i).data.nonzero().squeeze()
if sample_idx.numel() == 0:
Euclidean_loss += 0.0
else:
G_sample_cls = G_sample[sample_idx, :]
Euclidean_loss += (G_sample_cls.mean(dim=0) - tr_cls_centroid[i]).pow(2).sum().sqrt()
Euclidean_loss *= 1.0/dataset.train_cls_num * opt.CENT_LAMBDA
# ||W||_2 regularization
reg_loss = Variable(torch.Tensor([0.0])).cuda()
if opt.REG_W_LAMBDA != 0:
for name, p in netG.named_parameters():
if 'weight' in name:
reg_loss += p.pow(2).sum()
reg_loss.mul_(opt.REG_W_LAMBDA)
all_loss = GC_loss + Euclidean_loss + reg_loss
all_loss.backward()
optimizerG.step()
reset_grad(nets)
"""Cycle Loss"""
for _ in range(5):
blobs = data_layer.forward()
feat_data = blobs['data'] # image data
labels = blobs['labels'].astype(int) # class labels
text_feat = np.array([dataset.train_att[i, :] for i in labels])
text_feat = Variable(torch.from_numpy(text_feat.astype('float32'))).cuda()
X = Variable(torch.from_numpy(feat_data)).cuda()
y_true = Variable(torch.from_numpy(labels.astype('int'))).cuda()
z = Variable(torch.randn(opt.batchsize, opt.z_dim)).cuda()
z2 = Variable(torch.randn(opt.batchsize, opt.z_dim)).cuda()
G_sample = netG(z, text_feat)
text_sample = netG2(z2, G_sample)
cycle_loss = 10* torch.nn.MSELoss()(text_feat, text_sample)
cycle_loss.backward()
optimizerG.step()
reset_grad(nets)
if it % opt.disp_interval == 0 and it:
acc_real = (np.argmax(C_real.data.cpu().numpy(), axis=1) ==
y_true.data.cpu().numpy()).sum() / float(y_true.data.size()[0])
acc_fake = (np.argmax(C_fake.data.cpu().numpy(), axis=1)
== y_true.data.cpu().numpy()).sum() / float(y_true.data.size()[0])
log_text = 'Iter-{}; Was_D: {:.3f}; Euc_ls: {:.3f}; reg_ls: {:.3f}; \n' \
'G_loss: {:.3f}; D_loss_real: {:.3f}; D_loss_fake: {:.3f};' \
' rl: {:.2f}%; fk: {:.2f}%;cycle: {:.3f} \n'\
.format(it, Wasserstein_D.item(), Euclidean_loss.item(),
reg_loss.item(), G_loss.item(), D_loss_real.item(),
D_loss_fake.item(),
acc_real * 100, acc_fake * 100,cycle_loss)
print(log_text)
with open(log_dir, 'a') as f:
f.write(log_text+'\n')
if it % opt.evl_interval == 0 and it >= 100:
netG.eval()
eval_fakefeat_test(it, netG, dataset, param, result)
if result.save_model:
files2remove = glob.glob(out_subdir + '/Best_model_ZSL_*')
for _i in files2remove:
os.remove(_i)
# best_acc = result.acc_list[-1]
save_model(it, netG, netD,netG2,netD2, opt.manualSeed, log_text,
out_subdir + '/Best_model_ZSL_Acc_{:.2f}.tar'.format(result.acc_list[-1]))
eval_fakefeat_test_gzsl(it, netG, dataset, param, result_gzsl)
if result.save_model:
files2remove = glob.glob(out_subdir + '/Best_model_GZSL_*')
for _i in files2remove:
os.remove(_i)
# best_acc_gzsl = result.acc_list[-1]
save_model(it, netG, netD,netG2,netD2, opt.manualSeed, log_text,
out_subdir + '/Best_model_GZSL_H_{:.2f}_S_{:.2f}_U_{:.2f}.tar'.format(result_gzsl.best_acc,
result_gzsl.best_acc_S_T,
result_gzsl.best_acc_U_T))
netG.train()
if it % opt.save_interval == 0 and it:
save_model(it, netG, netD,netG2,netD2, opt.manualSeed, log_text,
out_subdir + '/Iter_{:d}.tar'.format(it))
cprint('Save model to ' + out_subdir + '/Iter_{:d}.tar'.format(it), 'red')
def save_model(it, netG, netD,netG2,netD2, random_seed, log, fout):
torch.save({
'it': it + 1,
'state_dict_G': netG.state_dict(),
'state_dict_D': netD.state_dict(),
'random_seed': random_seed,
'log': log,
}, fout)
def eval_fakefeat_test(it, netG, dataset, param, result):
gen_feat = np.zeros([0, param.X_dim])
for i in range(dataset.test_cls_num):
text_feat = np.tile(dataset.test_att[i].astype('float32'), (opt.nSample, 1))
text_feat = Variable(torch.from_numpy(text_feat)).cuda()
z = Variable(torch.randn(opt.nSample, opt.z_dim)).cuda()
G_sample = netG(z, text_feat)
gen_feat = np.vstack((gen_feat, G_sample.data.cpu().numpy()))
from sklearn.metrics.pairwise import cosine_similarity
# cosince predict K-nearest Neighbor
sim = cosine_similarity(dataset.test_unseen_feature, gen_feat)
idx_mat = np.argsort(-1 * sim, axis=1)
label_mat = (idx_mat[:, 0:opt.Knn] / opt.nSample).astype(int)
preds = np.zeros(label_mat.shape[0])
for i in range(label_mat.shape[0]):
(values, counts) = np.unique(label_mat[i], return_counts=True)
preds[i] = values[np.argmax(counts)]
# produce MCA
label_T = np.asarray(dataset.test_unseen_label)
acc = np.zeros(label_T.max() + 1)
for i in range(label_T.max() + 1):
acc[i] = (preds[label_T == i] == i).mean()
acc = acc.mean() * 100
result.acc_list += [acc]
result.iter_list += [it]
result.save_model = False
if acc > result.best_acc:
result.best_acc = acc
result.best_iter = it
result.save_model = True
print("{}nn Classifer: ".format(opt.Knn))
print("Accuracy is {:.2f}%".format(acc))
def eval_fakefeat_test_gzsl(it, netG, dataset, param, result):
from sklearn.metrics.pairwise import cosine_similarity
gen_feat_train_cls = np.zeros([0, param.X_dim])
for i in range(dataset.train_cls_num):
text_feat = np.tile(dataset.train_att[i].astype('float32'), (opt.nSample, 1))
text_feat = Variable(torch.from_numpy(text_feat)).cuda()
z = Variable(torch.randn(opt.nSample, opt.z_dim)).cuda()
G_sample = netG(z, text_feat)
gen_feat_train_cls = np.vstack((gen_feat_train_cls, G_sample.data.cpu().numpy()))
gen_feat_test_cls = np.zeros([0, param.X_dim])
for i in range(dataset.test_cls_num):
text_feat = np.tile(dataset.test_att[i].astype('float32'), (opt.nSample, 1))
text_feat = Variable(torch.from_numpy(text_feat)).cuda()
z = Variable(torch.randn(opt.nSample, opt.z_dim)).cuda()
G_sample = netG(z, text_feat)
gen_feat_test_cls = np.vstack((gen_feat_test_cls, G_sample.data.cpu().numpy()))
""" S -> T
"""
sim = cosine_similarity(dataset.test_seen_feature, np.vstack((gen_feat_train_cls, gen_feat_test_cls)))
idx_mat = np.argsort(-1 * sim, axis=1)
label_mat = (idx_mat[:, 0:opt.Knn] / opt.nSample).astype(int)
preds = np.zeros(label_mat.shape[0])
for i in range(label_mat.shape[0]):
(values, counts) = np.unique(label_mat[i], return_counts=True)
preds[i] = values[np.argmax(counts)]
# produce MCA
label_T = np.asarray(dataset.test_seen_label)
acc = np.zeros(label_T.max() + 1)
for i in range(label_T.max() + 1):
acc[i] = (preds[label_T == i] == i).mean()
acc_S_T = acc.mean() * 100
""" U -> T
"""
sim = cosine_similarity(dataset.test_unseen_feature, np.vstack((gen_feat_test_cls, gen_feat_train_cls)))
idx_mat = np.argsort(-1 * sim, axis=1)
label_mat = (idx_mat[:, 0:opt.Knn] / opt.nSample).astype(int)
preds = np.zeros(label_mat.shape[0])
for i in range(label_mat.shape[0]):
(values, counts) = np.unique(label_mat[i], return_counts=True)
preds[i] = values[np.argmax(counts)]
# produce MCA
label_T = np.asarray(dataset.test_unseen_label)
acc = np.zeros(label_T.max() + 1)
for i in range(label_T.max() + 1):
acc[i] = (preds[label_T == i] == i).mean()
acc_U_T = acc.mean() * 100
acc = (2 * acc_S_T * acc_U_T) / (acc_S_T + acc_U_T)
result.acc_list += [acc]
result.iter_list += [it]
result.save_model = False
if acc > result.best_acc:
result.best_acc = acc
result.best_iter = it
result.best_acc_S_T = acc_S_T
result.best_acc_U_T = acc_U_T
result.save_model = True
print("H {:.2f}% S->T {:.2f}% U->T {:.2f}% ".format(acc, acc_S_T, acc_U_T))
class Result(object):
def __init__(self):
self.best_acc = 0.0
self.best_iter = 0.0
self.best_acc_S_T = 0.0
self.best_acc_U_T = 0.0
self.acc_list = []
self.iter_list = []
def weights_init(m):
classname = m.__class__.__name__
if 'Linear' in classname:
init.xavier_normal(m.weight.data)
init.constant(m.bias, 0.0)
def reset_grad(nets):
for net in nets:
net.zero_grad()
def label2mat(labels, y_dim):
c = np.zeros([labels.shape[0], y_dim])
for idx, d in enumerate(labels):
c[idx, d] = 1
return c
def calc_gradient_penalty(netD, real_data, fake_data):
alpha = torch.rand(opt.batchsize, 1)
alpha = alpha.expand(real_data.size())
alpha = alpha.cuda()
interpolates = alpha * real_data + ((1 - alpha) * fake_data)
interpolates = interpolates.cuda()
interpolates = autograd.Variable(interpolates, requires_grad=True)
disc_interpolates, _ = netD(interpolates)
gradients = autograd.grad(outputs=disc_interpolates, inputs=interpolates,
grad_outputs=torch.ones(disc_interpolates.size()).cuda(),
create_graph=True, retain_graph=True, only_inputs=True)[0]
gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean() * opt.GP_LAMBDA
return gradient_penalty
if __name__ == "__main__":
train()