-
Notifications
You must be signed in to change notification settings - Fork 99
/
Copy pathinference.py
163 lines (127 loc) · 5.76 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import json
import re
from tqdm import tqdm
import transformers as huggingface_transformers
from uie.extraction.record_schema import RecordSchema
from uie.sel2record.record import MapConfig
from uie.extraction.scorer import *
from uie.sel2record.sel2record import SEL2Record
import math
import os
split_bracket = re.compile(r"\s*<extra_id_\d>\s*")
special_to_remove = {'<pad>', '</s>'}
def read_json_file(file_name):
return [json.loads(line) for line in open(file_name)]
def schema_to_ssi(schema: RecordSchema):
ssi = "<spot> " + "<spot> ".join(sorted(schema.type_list))
ssi += "<asoc> " + "<asoc> ".join(sorted(schema.role_list))
ssi += "<extra_id_2> "
return ssi
def post_processing(x):
for special in special_to_remove:
x = x.replace(special, '')
return x.strip()
class HuggingfacePredictor:
def __init__(self, model_path, schema_file, max_source_length=256, max_target_length=192) -> None:
self._tokenizer = huggingface_transformers.T5TokenizerFast.from_pretrained(
model_path)
self._model = huggingface_transformers.T5ForConditionalGeneration.from_pretrained(
model_path)
self._model.cuda()
self._schema = RecordSchema.read_from_file(schema_file)
self._ssi = schema_to_ssi(self._schema)
self._max_source_length = max_source_length
self._max_target_length = max_target_length
def predict(self, text):
text = [self._ssi + x for x in text]
inputs = self._tokenizer(
text, padding=True, return_tensors='pt').to(self._model.device)
inputs['input_ids'] = inputs['input_ids'][:, :self._max_source_length]
inputs['attention_mask'] = inputs['attention_mask'][:,
:self._max_source_length]
result = self._model.generate(
input_ids=inputs['input_ids'],
attention_mask=inputs['attention_mask'],
max_length=self._max_target_length,
)
return self._tokenizer.batch_decode(result, skip_special_tokens=False, clean_up_tokenization_spaces=False)
task_dict = {
'entity': EntityScorer,
'relation': RelationScorer,
'event': EventScorer,
}
def main():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(
'--data', '-d', default='data/text2spotasoc/absa/14lap')
parser.add_argument(
'--model', '-m', default='./models/uie_n10_21_50w_absa_14lap')
parser.add_argument('--max_source_length', default=256, type=int)
parser.add_argument('--max_target_length', default=192, type=int)
parser.add_argument('--batch_size', default=16, type=int)
parser.add_argument('-c', '--config', dest='map_config',
help='Offset Re-mapping Config',
default='config/offset_map/closest_offset_en.yaml')
parser.add_argument('--decoding', default='spotasoc')
parser.add_argument('--verbose', action='store_true')
parser.add_argument('--match_mode', default='normal',
choices=['set', 'normal', 'multimatch'])
options = parser.parse_args()
data_folder = options.data
model_path = options.model
predictor = HuggingfacePredictor(
model_path=model_path,
schema_file=f"{data_folder}/record.schema",
max_source_length=options.max_source_length,
max_target_length=options.max_target_length,
)
map_config = MapConfig.load_from_yaml(options.map_config)
schema_dict = SEL2Record.load_schema_dict(data_folder)
sel2record = SEL2Record(
schema_dict=schema_dict,
decoding_schema=options.decoding,
map_config=map_config,
)
for split, split_name in [('val', 'eval'), ('test', 'test')]:
gold_filename = f"{data_folder}/{split}.json"
text_list = [x['text'] for x in read_json_file(gold_filename)]
token_list = [x['tokens'] for x in read_json_file(gold_filename)]
batch_num = math.ceil(len(text_list) / options.batch_size)
predict = list()
for index in tqdm(range(batch_num)):
start = index * options.batch_size
end = index * options.batch_size + options.batch_size
pred_seq2seq = predictor.predict(text_list[start: end])
pred_seq2seq = [post_processing(x) for x in pred_seq2seq]
predict += pred_seq2seq
records = list()
for p, text, tokens in zip(predict, text_list, token_list):
r = sel2record.sel2record(pred=p, text=text, tokens=tokens)
records += [r]
results = dict()
for task, scorer in task_dict.items():
gold_list = [x[task] for x in read_json_file(gold_filename)]
pred_list = [x[task] for x in records]
gold_instance_list = scorer.load_gold_list(gold_list)
pred_instance_list = scorer.load_pred_list(pred_list)
sub_results = scorer.eval_instance_list(
gold_instance_list=gold_instance_list,
pred_instance_list=pred_instance_list,
verbose=options.verbose,
match_mode=options.match_mode,
)
results.update(sub_results)
with open(os.path.join(options.model, f'{split_name}_preds_record.txt'), 'w') as output:
for record in records:
output.write(f'{json.dumps(record)}\n')
with open(os.path.join(options.model, f'{split_name}_preds_seq2seq.txt'), 'w') as output:
for pred in predict:
output.write(f'{pred}\n')
with open(os.path.join(options.model, f'{split_name}_results.txt'), 'w') as output:
for key, value in results.items():
output.write(f'{split_name}_{key}={value}\n')
if __name__ == "__main__":
main()