-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
499 lines (416 loc) · 20.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
import numpy as np
import random
import matplotlib.pyplot as plt
import os
import csv
import ast
join = os.path.join
from tqdm import tqdm
from torch.backends import cudnn
import torch
import torch.nn as nn
import torch.distributed as dist
from segment_anything import sam_model_registry
import argparse
from torch.cuda import amp
import torch.multiprocessing as mp
from multiprocessing import Manager
from torch.nn.parallel import DistributedDataParallel as DDP
import datetime
import logging
from data_loader import get_loader
from model import IMISNet
from utils import FocalDice_MSELoss
from torch.nn import CrossEntropyLoss
import re
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
parser = argparse.ArgumentParser()
parser.add_argument('--work_dir', type=str, default='work_dir')
parser.add_argument('--task_name', type=str, default='ft-IMISNet')
#load data
parser.add_argument("--data_dir", type = str, default='dataset/BTCV')
parser.add_argument('--image_size', type=int, default=256)
parser.add_argument('--test_mode', type=bool, default=False)
parser.add_argument('--batch_size', type=int, default=10)
#load model
parser.add_argument('--model_type', type=str, default='vit_b')
parser.add_argument('--sam_checkpoint', type=str, default='ckpt/IMISNet-B.pth')
parser.add_argument('--pretrain_path', type=str, default='work_dir/ft-IMISNet/IMIS_latest.pth')
parser.add_argument('--resume', action='store_true', default=True)
parser.add_argument('--device', type=str, default='cuda')
parser.add_argument('--mask_num', type=int, default=2)
parser.add_argument('--inter_num', type=int, default=4)
# train
parser.add_argument('--num_epochs', type=int, default=20)
parser.add_argument('--lr_scheduler', type=str, default=None)
parser.add_argument('--step_size', type=list, default=[7,12])
parser.add_argument('--gamma', type=float, default=0.5)
parser.add_argument('--lr', type=float, default=1e-4)
parser.add_argument('--weight_decay', type=float, default=1e-5)
parser.add_argument('--port', type=int, default=12305)
parser.add_argument('--gpu_ids', type=int, nargs='+', default=[0])
parser.add_argument('--multi_gpu', action='store_true', default=False)
parser.add_argument('--dist', dest='dist', type=bool, default=False, help='distributed training or not')
parser.add_argument('-num_workers', type=int, default=1)
args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = ','.join([str(i) for i in args.gpu_ids])
logger = logging.getLogger(__name__)
LOG_OUT_DIR = join(args.work_dir, args.task_name)
device = args.device
MODEL_SAVE_PATH = join(args.work_dir, args.task_name)
os.makedirs(MODEL_SAVE_PATH, exist_ok=True)
def build_model(args):
category_weights = 'dataloaders/categories_weight.pkl'
sam = sam_model_registry[args.model_type](args).to(device)
imis = IMISNet(sam, test_mode=args.test_mode, select_mask_num=args.mask_num, category_weights=category_weights).to(device)
if args.multi_gpu:
imis = DDP(imis, device_ids=[args.rank], output_device=args.rank)
return imis
class BaseTrainer:
def __init__(self, model, dataloaders, args):
self.model = model
self.dataloaders = dataloaders
self.args = args
self.best_loss = np.inf
self.best_dice = 0.0
self.best_iou = 0.0
self.step_best_dice = 0.0
self.losses = []
self.dices = []
self.ious = []
self.set_loss_fn()
self.set_optimizer()
self.set_lr_scheduler()
if args.pretrain_path is not None:
self.load_checkpoint(args.pretrain_path, args.resume)
else:
self.start_epoch = 0
def set_loss_fn(self):
self.seg_loss = FocalDice_MSELoss()
self.ce_loss = CrossEntropyLoss()
def set_optimizer(self):
self.optimizer = torch.optim.AdamW(self.model.parameters(), lr=self.args.lr, weight_decay=self.args.weight_decay) #
def set_lr_scheduler(self):
if self.args.lr_scheduler == "multisteplr":
self.lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(self.optimizer,
self.args.step_size,
self.args.gamma)
elif self.args.lr_scheduler == "steplr":
self.lr_scheduler = torch.optim.lr_scheduler.StepLR(self.optimizer,
self.args.step_size[0],
self.args.gamma)
elif self.args.lr_scheduler == 'coswarm':
self.lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(self.optimizer)
else:
self.lr_scheduler = torch.optim.lr_scheduler.LinearLR(self.optimizer, 0.1)
def load_checkpoint(self, ckp_path, resume):
last_ckpt = None
if os.path.exists(ckp_path):
if self.args.multi_gpu:
dist.barrier()
last_ckpt = torch.load(ckp_path, map_location=self.args.device)
else:
last_ckpt = torch.load(ckp_path, map_location=self.args.device)
if last_ckpt:
if self.args.multi_gpu:
try:
self.model.module.load_state_dict(last_ckpt['model_state_dict'])
except Exception as e:
print(f"Failed to load model state dict: {e}")
self.model.load_state_dict(last_ckpt['model_state_dict'], False)
else:
try:
self.model.load_state_dict(last_ckpt['model_state_dict'])
except Exception as e:
print(f"Failed to load model state dict: {e}")
self.model.load_state_dict(last_ckpt['model_state_dict'], False)
if resume:
self.start_epoch = last_ckpt['epoch']
self.optimizer.load_state_dict(last_ckpt['optimizer_state_dict'])
self.lr_scheduler.load_state_dict(last_ckpt['lr_scheduler_state_dict'])
self.losses = last_ckpt['losses']
self.dices = last_ckpt['dices']
self.ious = last_ckpt['ious']
self.best_loss = last_ckpt['best_loss']
self.best_dice = last_ckpt['best_dice']
else:
self.start_epoch = 0
print(f"Loaded checkpoint from {ckp_path} (epoch {self.start_epoch})")
else:
self.start_epoch = 0
print(f"No checkpoint found at {ckp_path}, start training from scratch")
def save_checkpoint(self, epoch, state_dict, describe="last"):
torch.save({
"epoch": epoch + 1,
"model_state_dict": state_dict,
"optimizer_state_dict": self.optimizer.state_dict(),
"lr_scheduler_state_dict": self.lr_scheduler.state_dict(),
"losses": self.losses,
"ious": self.ious,
"dices": self.dices,
"best_loss": self.best_loss,
"best_iou": self.best_iou,
"best_dice": self.best_dice,
"args": self.args,
}, join(MODEL_SAVE_PATH, f"IMIS_{describe}.pth"))
def get_iou_and_dice(self, pred, label):
assert pred.shape == label.shape
pred = (torch.sigmoid(pred) > 0.5)
label = (label > 0)
intersection = torch.logical_and(pred, label).sum(dim=(1, 2, 3))
union = torch.logical_or(pred, label).sum(dim=(1, 2, 3))
iou = intersection.float() / (union.float() + 1e-8)
dice = (2 * intersection.float()) / (pred.sum(dim=(1, 2, 3)) + label.sum(dim=(1, 2, 3)) + 1e-8)
return iou.mean().item(), dice.mean().item()
def plot_result(self, plot_data, description, save_name):
plt.plot(plot_data)
plt.title(description)
plt.xlabel('Epoch')
plt.ylabel(f'{save_name}')
plt.savefig(join(MODEL_SAVE_PATH, f'{save_name}.png'))
plt.close()
def interaction(
self,
model,
image_embedding,
gt_low_masks,
pseudo_low_masks,
gt_preds,
pseudo_preds,
labels,
pseudos,
):
total_loss = 0
text_and_mask_inter = np.random.randint(0, self.args.inter_num-1)
with amp.autocast():
for inter in range(self.args.inter_num):
if inter == text_and_mask_inter or inter == self.args.inter_num-1:
gt_prompts = model.process_mask_prompt(gt_low_masks)
gt_prompts.update(self.text_prompt)
gt_outputs = model.forward_decoder(image_embedding, gt_prompts)
gt_preds, gt_low_masks = gt_outputs['masks'], gt_outputs['low_res_masks']
gt_loss = self.seg_loss(gt_preds, labels.float(), gt_outputs['iou_pred'])
pseudo_prompts = model.process_mask_prompt(pseudo_low_masks)
else:
gt_prompts = model.supervised_prompts(None, labels, gt_preds, gt_low_masks, 'points')
if random.random() > 0.6:
gt_prompts.update(self.text_prompt)
del gt_prompts['mask_inputs']
gt_outputs = model.forward_decoder(image_embedding, gt_prompts)
gt_preds, gt_low_masks = gt_outputs['masks'], gt_outputs['low_res_masks']
gt_loss = self.seg_loss(gt_preds, labels.float(), gt_outputs['iou_pred'])
pseudo_prompts = model.unsupervised_prompts(pseudos, pseudo_preds, pseudo_low_masks, 'points')
pseudo_outputs = model.forward_decoder(image_embedding, pseudo_prompts)
pseudo_preds, pseudo_low_masks = pseudo_outputs['masks'], pseudo_outputs['low_res_masks']
pseudo_loss = self.seg_loss(pseudo_preds, pseudos.float(), pseudo_outputs['iou_pred'])
loss = gt_loss + pseudo_loss
if torch.isnan(loss).any():
print(f"Detected NaN loss. Skipping this inter.")
total_loss += 0
continue
else:
total_loss += loss.item()
self.scaler.scale(loss).backward(retain_graph=True)
self.scaler.step(self.optimizer)
self.scaler.update()
self.optimizer.zero_grad()
loss = total_loss / self.args.inter_num
return loss, gt_preds, pseudo_preds
def train_epoch(self, epoch):
step_loss, step_iou, step_dice = 0, 0, 0
self.model.train()
if self.args.multi_gpu:
model = self.model.module
else:
model = self.model
tbar = tqdm(self.dataloaders)
l = len(self.dataloaders)
for step, batch_input in enumerate(tbar):
images, labels = batch_input["image"].to(device), batch_input["label"].to(device).type(torch.long)
pseudos = batch_input["pseudo"].to(device)
self.target_list = batch_input['target_list']
gt_prompt = batch_input["gt_prompt"]
pseudo_prompt = batch_input["pseudo_prompt"]
gt_prompts, pseudo_prompts = {}, {}
if torch.sum(labels) == 0 or torch.sum(pseudos) == 0:
continue
self.text_prompt = model.process_text_prompt(self.target_list)
self.img_shape = images.shape
image_embedding = model.image_forward(images)
gt_prm = random.choices(['bboxes', 'points', 'text'], [0.4, 0.3, 0.3])[0] #supervised specify prompt
pse_prm = random.choices(['bboxes', 'points'], [0.5, 0.5])[0]
if gt_prm == 'bboxes':
gt_prompts['bboxes'] = gt_prompt['bboxes'].to(device)
elif gt_prm == 'points':
gt_prompts['point_coords'] = gt_prompt['point_coords'].to(device)
gt_prompts['point_labels'] = gt_prompt['point_labels'].to(device)
else:
gt_prompts.update(self.text_prompt)
if pse_prm == 'bboxes':
pseudo_prompts['bboxes'] = pseudo_prompt['bboxes'].to(device)
else:
pseudo_prompts['point_coords'] = pseudo_prompt['point_coords'].to(device)
pseudo_prompts['point_labels'] = pseudo_prompt['point_labels'].to(device)
with amp.autocast():
gt_outputs = model.forward_decoder(image_embedding, gt_prompts)
gt_loss = self.seg_loss(gt_outputs['masks'], labels.float(), gt_outputs['iou_pred'])
pseudo_outputs = model.forward_decoder(image_embedding, pseudo_prompts)
pseudo_loss = self.seg_loss(pseudo_outputs['masks'], pseudos.float(), pseudo_outputs['iou_pred'])
loss = gt_loss + pseudo_loss
if torch.isnan(loss).any():
print(f"Detected NaN loss at epoch {epoch}, batch {step}. Skipping this batch.")
continue
else:
self.scaler.scale(loss).backward(retain_graph=False) #
self.scaler.step(self.optimizer)
self.scaler.update()
self.optimizer.zero_grad()
gt_preds, gt_low_masks = gt_outputs['masks'], gt_outputs['low_res_masks']
pseudo_preds, pseudo_low_masks = pseudo_outputs['masks'], pseudo_outputs['low_res_masks']
image_embedding = image_embedding.detach().clone()
self.text_prompt['text_inputs'] = self.text_prompt['text_inputs'].detach().clone()
loss, gt_preds, pseudo_preds = self.interaction(model, image_embedding, gt_low_masks, pseudo_low_masks,
gt_preds, pseudo_preds,
labels, pseudos
)
gt_iou, gt_dice = self.get_iou_and_dice(gt_preds, labels)
if not self.args.multi_gpu or (self.args.multi_gpu and self.args.rank == 0):
if (step + 1) % 100 == 0:
pseudo_iou, pseudo_dice = self.get_iou_and_dice(pseudo_preds, pseudos)
print(f'Epoch: {epoch}, Step: {step+1}, Loss: {loss:.4f}, IoU: {gt_iou:.4f}, Dice: {gt_dice:.4f}, pseudo_IoU: {pseudo_iou:.4f}, pseudo_Dice: {pseudo_dice:.4f}')
if gt_dice > self.step_best_dice:
self.step_best_dice = gt_dice
if gt_dice > 0.95:
self.save_checkpoint(epoch, model.state_dict(),
describe=f'{epoch}_step_dice:{"{:.4f}".format(gt_dice)}_best')
step_loss += loss
step_iou += gt_iou
step_dice += gt_dice
if self.args.multi_gpu:
dist.barrier()
local_loss = torch.tensor([step_loss / l]).to(self.args.device)
dist.all_reduce(local_loss, op=dist.ReduceOp.SUM)
avg_loss = local_loss.item() / dist.get_world_size()
local_iou = torch.tensor([float(step_iou / l)]).to(self.args.device)
dist.all_reduce(local_iou, op=dist.ReduceOp.SUM)
avg_iou = local_iou.item() / dist.get_world_size()
local_dice = torch.tensor([float(step_dice / l)]).to(self.args.device)
dist.all_reduce(local_dice, op=dist.ReduceOp.SUM)
avg_dice = local_dice.item() / dist.get_world_size()
else:
avg_loss, avg_iou, avg_dice = step_loss / l, step_iou / l, step_dice / l
return avg_loss, avg_iou, avg_dice
def train(self):
self.scaler = amp.GradScaler()
for epoch in range(self.start_epoch, self.args.num_epochs):
if not self.args.multi_gpu or (self.args.multi_gpu and self.args.rank == 0):
print(f'Epoch: {epoch}/{self.args.num_epochs - 1}')
if self.args.multi_gpu:
dist.barrier()
self.dataloaders.sampler.set_epoch(epoch)
avg_loss, avg_iou, avg_dice = self.train_epoch(epoch)
if self.lr_scheduler is not None:
self.lr_scheduler.step()
if not self.args.multi_gpu or (self.args.multi_gpu and self.args.rank == 0):
self.losses.append(avg_loss)
self.ious.append(avg_iou)
self.dices.append(avg_dice)
print(f'Epochs: {epoch}, LR: {self.lr_scheduler.get_last_lr()}, Loss: {avg_loss:.4f}, IoU: {avg_iou:.4f}, Dice: {avg_dice:.4f}')
logger.info(f'Epoch\t {epoch}\t LR\t {self.lr_scheduler.get_last_lr()}\t: loss: {avg_loss:.4f}, iou: {avg_iou:.4f}, dice: {avg_dice:.4f}')
if self.args.multi_gpu:
state_dict = self.model.module.state_dict()
else:
state_dict = self.model.state_dict()
self.save_checkpoint(epoch, state_dict, describe='latest')
if avg_loss < self.best_loss:
self.best_loss = avg_loss
# self.save_checkpoint(epoch, state_dict, describe='loss_best')
if avg_iou > self.best_iou:
self.best_iou = avg_iou
# self.save_checkpoint(epoch, state_dict, describe='iou_best')
# save train dice best checkpoint
if avg_dice > self.best_dice:
self.best_dice = avg_dice
self.save_checkpoint(epoch, state_dict, describe='dice_best')
self.plot_result(self.losses, 'Loss', 'Loss')
self.plot_result(self.dices, 'Dice', 'Dice')
self.plot_result(self.ious, 'IoU', 'IoU')
logger.info('=====================================================================')
logger.info(f'Best loss: {self.best_loss}, Best iou: {self.best_iou}, Best dice: {self.best_dice}')
logger.info(f'args : {self.args}')
logger.info('=====================================================================')
########################################## Trainer ##########################################
def init_seeds(seed=0, cuda_deterministic=True):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
# Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html
if cuda_deterministic: # slower, more reproducible
cudnn.deterministic = True
cudnn.benchmark = False
else: # faster, less reproducible
cudnn.deterministic = False
cudnn.benchmark = True
def device_config(args):
try:
if not args.multi_gpu:
if args.device == 'mps':
args.device = torch.device('mps')
else:
args.device = torch.device(f"cuda:{args.gpu_ids[0]}")
else:
args.nodes = 1
args.ngpus_per_node = len(args.gpu_ids)
args.world_size = args.nodes * args.ngpus_per_node
except RuntimeError as e:
print(e)
def main():
print('*'*100)
for key, value in vars(args).items():
print(key + ': ' + str(value))
print('*'*100)
mp.set_sharing_strategy('file_system')
device_config(args)
if args.multi_gpu:
mp.spawn(main_worker, nprocs=args.world_size, args=(args, ))
else:
random.seed(42)
np.random.seed(42)
torch.manual_seed(42)
# Load datasets
dataloaders = get_loader(args)
# Build model
model = build_model(args)
# Create trainer
trainer = BaseTrainer(model, dataloaders, args)
# Train
trainer.train()
def main_worker(rank, args):
setup(rank, args.world_size)
torch.cuda.set_device(rank)
args.device = torch.device(f"cuda:{rank}")
args.rank = rank
args.gpu_info = {"gpu_count":args.world_size, 'gpu_name':rank}
init_seeds(2024 + rank)
cur_time = datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S')
logging.basicConfig(
format='[%(asctime)s] - %(message)s',
datefmt='%Y/%m/%d %H:%M:%S',
level=logging.INFO if rank in [-1, 0] else logging.WARN,
filemode='w',
filename=os.path.join(LOG_OUT_DIR, f'output_{cur_time}.log'))
dataloaders = get_loader(args)
model = build_model(args)
trainer = BaseTrainer(model, dataloaders, args)
trainer.train()
cleanup()
def setup(rank, world_size):
# initialize the process group
os.environ['MASTER_ADDR'] = '127.0.0.1'
os.environ['MASTER_PORT'] = f'{args.port}'
dist.init_process_group(backend='NCCL', init_method='env://', rank=rank, world_size=world_size)
def cleanup():
dist.destroy_process_group()
if __name__ == '__main__':
main()