-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathlayers.py
125 lines (109 loc) · 4.62 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import torch
import torch.nn as nn
import torch.nn.functional as F
class FourierFeatEnc(nn.Module):
"""
Inspired by
https://github.com/facebookresearch/pytorch3d/blob/fc4dd80208bbcf6f834e7e1594db0e106961fd60/pytorch3d/renderer/implicit/harmonic_embedding.py#L10
"""
def __init__(self, k, include_input=True, use_logspace=False, max_freq=None):
super(FourierFeatEnc, self).__init__()
if use_logspace:
freq_bands = 2 ** torch.arange(0, k) * torch.pi
else:
assert max_freq is not None
freq_bands = 2 ** torch.linspace(0, max_freq, steps=k+1)[:-1] * torch.pi
self.register_buffer("freq_bands", freq_bands, persistent=False)
self.include_input = include_input
def forward(self, x):
embed = (x[..., None] * self.freq_bands).view(*x.size()[:-1], -1)
if self.include_input:
return torch.cat((embed.cos(), embed.sin(), x), dim=-1)
return torch.cat((embed.cos(), embed.sin()), dim=-1)
class RandomFourierFeatEnc(nn.Module):
def __init__(self, k, std=1., in_dim=3, dtype=torch.float32, include_input=True):
super(RandomFourierFeatEnc, self).__init__()
B = torch.randn((in_dim, k), dtype=dtype) * std
self.register_buffer("B", B, persistent=True)
self.include_input = include_input
def forward(self, x):
embed = (2 * torch.pi * x) @ self.B
if self.include_input:
return torch.cat((embed.cos(), embed.sin(), x), dim=-1)
return torch.cat((embed.cos(), embed.sin()), dim=-1)
class Sine(nn.Module):
def __init__(self):
super(Sine, self).__init__()
def forward(self, x):
return torch.sin(x)
class LinearWithConcatAndActivation(nn.Module):
def __init__(self, x_in_dim, y_in_dim, out_dim, batchnorm=False, activation=nn.ReLU):
super(LinearWithConcatAndActivation, self).__init__()
self.Lx = nn.Linear(x_in_dim, out_dim)
self.Ly = nn.Linear(y_in_dim, out_dim)
self.actn = activation()
self.batchnorm = None
if batchnorm:
self.batchnorm = nn.BatchNorm1d(out_dim)
def forward(self, x, y):
out = self.actn(self.Lx(x) + self.Ly(y))
return out if self.batchnorm is None else self.batchnorm(out)
class MLP(nn.Module):
def __init__(self,
in_channels,
hidden_channels,
out_channels,
num_layers,
use_bn=False,
use_ln=False,
dropout=0.5,
activation='relu',
residual=False):
super(MLP, self).__init__()
self.lins = nn.ModuleList()
if use_bn: self.bns = nn.ModuleList()
if use_ln: self.lns = nn.ModuleList()
if num_layers == 1:
# linear mapping
self.lins.append(nn.Linear(in_channels, out_channels))
else:
self.lins.append(nn.Linear(in_channels, hidden_channels))
if use_bn: self.bns.append(nn.BatchNorm1d(hidden_channels))
if use_ln: self.lns.append(nn.LayerNorm(hidden_channels))
for layer in range(num_layers-2):
self.lins.append(nn.Linear(hidden_channels, hidden_channels))
if use_bn: self.bns.append(nn.BatchNorm1d(hidden_channels))
if use_ln: self.lns.append(nn.LayerNorm(hidden_channels))
self.lins.append(nn.Linear(hidden_channels, out_channels))
if activation == 'relu':
self.activation = nn.ReLU()
elif activation == 'gelu':
self.activation = nn.GELU()
elif activation == 'tanh':
self.activation = nn.Tanh()
else:
raise ValueError('Invalid activation')
self.use_bn = use_bn
self.use_ln = use_ln
self.dropout = dropout
self.residual = residual
def forward(self, x):
x_prev = x
for i, lin in enumerate(self.lins[:-1]):
x = lin(x)
x = self.activation(x)
if self.use_bn:
if x.ndim == 2:
x = self.bns[i](x)
elif x.ndim == 3:
x = self.bns[i](x.transpose(2,1)).transpose(2,1)
else:
raise ValueError('invalid dimension of x')
if self.use_ln: x = self.lns[i](x)
if self.residual and x_prev.shape == x.shape: x = x + x_prev
x = F.dropout(x, p=self.dropout, training=self.training)
x_prev = x
x = self.lins[-1](x)
if self.residual and x_prev.shape == x.shape:
x = x + x_prev
return x