-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathdataset.py
202 lines (155 loc) · 7.56 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import numpy as np
import torch
import os
import imageio
import json
from cameras import DistortionTypes
from mesh import get_k_eigenfunc_vec_vals, load_first_k_eigenfunctions
from utils import load_obj_mask_as_tensor, load_cameras
def load_preprocessed_data(preproc_data_path):
data = {}
vertex_idxs_of_hit_faces = np.load(os.path.join(preproc_data_path, "vids_of_hit_faces.npy"))
data["vertex_idxs_of_hit_faces"] = torch.from_numpy(vertex_idxs_of_hit_faces).to(dtype=torch.int64)
barycentric_coords = np.load(os.path.join(preproc_data_path, "barycentric_coords.npy"))
data["barycentric_coords"] = torch.from_numpy(barycentric_coords).to(dtype=torch.float32)
expected_rgbs = np.load(os.path.join(preproc_data_path, "expected_rgbs.npy"))
data["expected_rgbs"] = torch.from_numpy(expected_rgbs).to(dtype=torch.float32)
unit_ray_dirs_path = os.path.join(preproc_data_path, "unit_ray_dirs.npy")
face_idxs_path = os.path.join(preproc_data_path, "face_idxs.npy")
if os.path.exists(unit_ray_dirs_path) and os.path.exists(face_idxs_path):
unit_ray_dirs = np.load(unit_ray_dirs_path)
data["unit_ray_dirs"] = torch.from_numpy(unit_ray_dirs).to(dtype=torch.float32)
face_idxs = np.load(face_idxs_path)
data["face_idxs"] = torch.from_numpy(face_idxs).to(dtype=torch.int64)
return data
class MeshViewsPreprocessedDataset(torch.utils.data.Dataset):
def __init__(self,
preproc_data_path,
eigenfunctions_path,
k,
feature_strategy="efuncs",
mesh=None,
rescale_strategy="standard",
eigenvalues_path=None,
embed_strategy=None,
transforms=None):
assert os.path.exists(preproc_data_path)
self.feature_strategy = feature_strategy
if self.feature_strategy == "efuncs":
self.k = k
self.E = load_first_k_eigenfunctions(eigenfunctions_path,
self.k,
rescale_strategy=rescale_strategy,
embed_strategy=embed_strategy,
eigenvalues_path=eigenvalues_path)
elif self.feature_strategy in ("ff", "rff", "xyz"):
assert mesh is not None
self.vertices = torch.from_numpy(mesh.vertices).to(dtype=torch.float32)
else:
raise ValueError(f"Unknown input feature strategy: {self.feature_strategy}")
data = load_preprocessed_data(preproc_data_path)
self.vertex_idxs_of_hit_faces = data["vertex_idxs_of_hit_faces"]
self.barycentric_coords = data["barycentric_coords"]
self.expected_rgbs = data["expected_rgbs"]
self.unit_ray_dirs = data.get("unit_ray_dirs")
self.face_idxs = data.get("face_idxs")
self.transforms = transforms
def get_eigenfunctions(self):
return self.E
def __len__(self):
return len(self.expected_rgbs)
def __getitem__(self, idx):
item = {}
assert idx < len(self.expected_rgbs)
vertex_idxs_of_hit_faces = self.vertex_idxs_of_hit_faces[idx] # 3
barycentric_coords = self.barycentric_coords[idx] # 3
if self.feature_strategy == "efuncs":
eigenfuncs = get_k_eigenfunc_vec_vals(self.E, vertex_idxs_of_hit_faces.unsqueeze(0), barycentric_coords.unsqueeze(0))
assert eigenfuncs.dtype == torch.float32
item["eigenfunctions"] = eigenfuncs.squeeze(0)
elif self.feature_strategy in ("ff", "rff", "xyz"):
item["xyz"] = self.vertices[vertex_idxs_of_hit_faces].T @ barycentric_coords
else:
raise ValueError(f"Unknown input feature strategy: {self.feature_strategy}")
expected_rgbs = self.expected_rgbs[idx]
assert expected_rgbs.dtype == torch.float32
item["expected_rgbs"] = expected_rgbs
if self.unit_ray_dirs is not None:
assert self.face_idxs is not None
item["unit_ray_dirs"] = self.unit_ray_dirs[idx]
item["hit_face_idxs"] = self.face_idxs[idx]
if self.transforms is not None:
return self.transforms(item)
return item
class MeshViewsDataset(torch.utils.data.Dataset):
def __init__(self, dataset_path, split, H=512, W=512, background="white"):
self.dataset_path = dataset_path
self.H = H
self.W = W
self.background = background
with open(os.path.join(self.dataset_path, f"{split}.lst"), "r") as file_handle:
self.mesh_views_list = [line[:-1] if line.endswith('\n') else line for line in file_handle.readlines()]
def __len__(self):
return len(self.mesh_views_list)
def __getitem__(self, idx):
assert idx < len(self.mesh_views_list)
mesh_view_path = os.path.join(self.dataset_path, self.mesh_views_list[idx])
# Load cameras
camCv2world, K = load_cameras(mesh_view_path)
# Load object mask
obj_mask = load_obj_mask_as_tensor(mesh_view_path)
bg_mask_1d = (obj_mask == False).reshape(-1)
obj_mask_1d = obj_mask.reshape(-1)
# Load view image
img = imageio.imread(os.path.join(mesh_view_path, "image", "000.png"))
img = torch.from_numpy(img).to(dtype=torch.float32)
img /= 255.
img = img.reshape(-1, 3)
# Ensure that background is correct and everything besides the object is set to the background color.
if self.background == "white":
img[bg_mask_1d] = 1.0
else:
assert False, "Currently only white background is supported"
img = img.reshape(self.H, self.W, 3)
return {
"camCv2world": camCv2world,
"K": K,
"img": img,
"obj_mask_1d": obj_mask_1d
}
#=== Meshroom Radial K3
def load_meshroom_metadata(dataset_path, split):
with open(os.path.join(dataset_path, f"{split}_data.json"), "r") as file_handle:
metadata = json.load(file_handle)
return metadata
class MeshroomRadialK3Dataset(torch.utils.data.Dataset):
def __init__(self, dataset_path, split, *, H, W):
self.dataset_path = dataset_path
self.H = H
self.W = W
self.metadata = load_meshroom_metadata(dataset_path, split)
self.K = torch.from_numpy(np.array(self.metadata["K"]).astype(np.float32))
self.distortion_params = list(map(float, self.metadata["distortion_params"]))
def __len__(self):
return len(self.metadata["views"])
def __getitem__(self, idx):
assert idx < len(self.metadata["views"])
cur_view = self.metadata["views"][idx]
# Load view image
img = imageio.imread(os.path.join(self.dataset_path, cur_view["view_file"])) / 255.
img = torch.from_numpy(img).to(dtype=torch.float32)
# Get masks
obj_mask = np.load(os.path.join(self.dataset_path, cur_view["obj_mask_file"]))
bg_mask = obj_mask == False
# Mask out background of the image
img[bg_mask] = 1.
cam2world = torch.from_numpy(np.array(cur_view["cam2world"]).astype(np.float32))
cam2world = cam2world[:3] # 3x4
return {
"camCv2world": cam2world,
"K": self.K,
"distortion_params": self.distortion_params,
"distortion_type": DistortionTypes.MESHROOM_RADIAL_K3,
"img": img,
"obj_mask_1d": obj_mask.reshape(-1)
}