-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathcameras.py
244 lines (187 loc) · 6.75 KB
/
cameras.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
"""
Partly taken from
https://github.com/tum-vision/tandem/blob/master/cva_mvsnet/models/datasets.py#L144
"""
import numpy as np
import torch
def _fx(cam: dict) -> float:
return cam['K'][0, 0]
def _cx(cam: dict) -> float:
return cam['K'][0, 2]
def _fy(cam: dict) -> float:
return cam['K'][1, 1]
def _cy(cam: dict) -> float:
return cam['K'][1, 2]
def _height(cam: dict) -> int:
return cam['height']
def _width(cam: dict) -> int:
return cam['width']
def _is_torch(cam: dict) -> bool:
return torch.is_tensor(cam['K'])
def cam_resize(cam: dict,
height: int,
width: int):
"""
Convert to new camera intrinsics for resize of image from original camera.
:param cam:
camera intrinsics
:param height:
height of resized frame
:param width:
width of resized frame
:return:
camera intrinsics for resized frame
"""
center_x = 0.5 * float(_width(cam) - 1)
center_y = 0.5 * float(_height(cam) - 1)
orig_cx_diff = _cx(cam) - center_x
orig_cy_diff = _cy(cam) - center_y
scaled_center_x = 0.5 * float(width - 1)
scaled_center_y = 0.5 * float(height - 1)
scale_x = float(width) / float(_width(cam))
scale_y = float(height) / float(_height(cam))
fx = scale_x * _fx(cam)
fy = scale_y * _fy(cam)
cx = scaled_center_x + scale_x * orig_cx_diff
cy = scaled_center_y + scale_y * orig_cy_diff
if _is_torch(cam):
return {
"K": torch.tensor([[fx, 0, cx, 0],
[0, fy, cy, 0],
[0, 0, 1, 0]], dtype=torch.float32),
"height": height,
"width": width,
}
else:
return {
"K": np.array([[fx, 0, cx, 0],
[0, fy, cy, 0],
[0, 0, 1, 0]]),
"height": height,
"width": width,
}
def cam_crop(cam: dict,
height: int,
width: int,
col: int,
row: int):
fx = _fx(cam)
fy = _fy(cam)
cx = _cx(cam) - col
cy = _cy(cam) - row
if _is_torch(cam):
return {
"K": torch.tensor([[fx, 0, cx, 0],
[0, fy, cy, 0],
[0, 0, 1, 0]], dtype=torch.float32),
"height": height,
"width": width,
}
else:
return {
"K": np.array([[fx, 0, cx, 0],
[0, fy, cy, 0],
[0, 0, 1, 0]]),
"height": height,
"width": width,
}
def load_extr_and_intr_camera(camera_path):
cameras = np.load(camera_path)
camCv2world = torch.from_numpy(cameras["world_mat_0"]).to(dtype=torch.float32)
K = torch.from_numpy(cameras["camera_mat_0"]).to(dtype=torch.float32)
return camCv2world, K
def _principal_point(K):
# See https://github.com/alicevision/AliceVision/blob/d7a737f5d8b4ae32ca5f389c8266c49c4e733894/src/aliceVision/camera/Pinhole.hpp#L74
return K[:2, 2]
def _focal(K):
# See https://github.com/alicevision/AliceVision/blob/d7a737f5d8b4ae32ca5f389c8266c49c4e733894/src/aliceVision/camera/Pinhole.hpp#L73
return K[0,0]
# Solve a single variable nonlinear equation
# Find p' such that disto_func(p') = r2 approximately holds
def _bisection_radius_solve(r2, disto_func):
eps = 1e-8
# Guess plausible upper and lower bound
lb, ub = r2, r2
while disto_func(lb) > r2:
lb /= 1.05
while disto_func(ub) < r2:
ub *= 1.05
# Bisection until accuracy is reached
while eps < (ub - lb):
m = (lb + ub) / 2
if disto_func(m) > r2:
ub = m
else:
lb = m
return (lb + ub) / 2
def _remove_distortion(p, disto_func):
# See https://github.com/alicevision/AliceVision/blob/d7a737f5d8b4ae32ca5f389c8266c49c4e733894/src/aliceVision/camera/PinholeRadial.hpp#L167
r2 = p[:,0]*p[:,0] + p[:,1]*p[:,1]
for i in range(p.shape[0]):
if r2 == 0:
radius = 1
else:
radius = np.sqrt(_bisection_radius_solve(r2[i], disto_func) / r2)
p[i] *= radius
return p
# Vectorized version of _bisection_radius_solve
def _bisection_radius_solve_v2(r2, disto_func, radius_one_mask):
eps = 1e-8
f = lambda ps: disto_func(ps) - r2
# Guess plausible upper and lower bound
lb, ub = np.array(r2), np.array(r2)
while True:
cond = f(lb) > 0
cond[radius_one_mask] = False
if not np.any(cond):
break
lb[cond] /= 1.05
while True:
cond = f(ub) < 0
cond[radius_one_mask] = False
if not np.any(cond):
break
ub[cond] *= 1.05
# Bisection until accuracy is reached for every entry
while True:
cond = eps < (ub - lb)
cond[radius_one_mask] = False
if not np.any(cond):
break
m = (lb + ub) / 2
cond2 = f(m) > 0
mask_ub = np.logical_and(cond, cond2)
ub[mask_ub] = m[mask_ub]
mask_lb = np.logical_and(cond, cond2 == False)
lb[mask_lb] = m[mask_lb]
return (lb + ub) / 2
# Vectorized version of _remove_distortion
def _remove_distortion_v2(p, disto_func):
# See https://github.com/alicevision/AliceVision/blob/d7a737f5d8b4ae32ca5f389c8266c49c4e733894/src/aliceVision/camera/PinholeRadial.hpp#L167
r2 = p[:,0]*p[:,0] + p[:,1]*p[:,1]
radius_one_mask = r2 == 0
radius = np.sqrt(_bisection_radius_solve_v2(r2, disto_func, radius_one_mask) / r2)
radius[radius_one_mask] = 1
return p * radius[..., None]
def undistort_pixels_meshroom_radial_k3(p_2d, K, distortion):
# The pixels are distorted.
# Undistortion => cam2ima( remove_disto(ima2cam(p)) )
# See https://github.com/alicevision/AliceVision/blob/d7a737f5d8b4ae32ca5f389c8266c49c4e733894/src/aliceVision/camera/PinholeRadial.hpp#L179
# See https://github.com/alicevision/AliceVision/blob/d7a737f5d8b4ae32ca5f389c8266c49c4e733894/src/aliceVision/camera/Pinhole.hpp#L84
# cam2ima = focal() * p + principal_point()
# ima2cam = ( p - principal_point() ) / focal()
focal = _focal(K)
principal_point = _principal_point(K)
# Transform a point from the camera plane to the image plane
cam2ima = lambda p: focal * p + principal_point
# Transform a point from the image plane to the camera plane
ima2cam = lambda p: (p - principal_point) / focal
k1 = distortion[0]
k2 = distortion[1]
k3 = distortion[2]
square = lambda x: x*x
disto_func = lambda x: x * square(1 + x * (k1 + x * (k2 + x * k3))) # x == r2
return cam2ima(_remove_distortion_v2(ima2cam(p_2d), disto_func))
# Supported distortion types
class DistortionTypes:
MESHROOM_RADIAL_K3 = "meshroom_radial_k3"