-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathlid_driven_cavity_2d.py
116 lines (97 loc) · 5.07 KB
/
lid_driven_cavity_2d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import sys
sys.path.append('..')
from diffpiso import *
simulation_data_directory = '../lidDrivenCavity/' #"SPECIFY YOUR TARGET DIRECTORY"
RE = 1000
N = 128
# SIMULATION SETUP ----------------------------------------------------------------------------------------
pressure_solver = PisoPressureSolverCudaCustom(accuracy=1e-8, max_iterations=1000, dx=[], cast_to_double=True)
pressure_solver.laplace_rank_deficient = tf.constant(True, dtype=tf.bool, shape=[1, ])
accuracy_placeholder = tf.placeholder(dtype=tf.float32)
linear_solver = LinearSolverCudaMultiBicgstabILU(accuracy=accuracy_placeholder, max_iterations=100, cast_to_double=False)
domain = Domain([N+1, N], box=box[0:1+1/N,0:1], boundaries=OPEN)
staggered_shape = calculate_staggered_shape(1, domain.resolution)
centered_shape = calculate_centered_shape(1, domain.resolution)
periodic_bool = (False, False)
dirichlet_mask_y = math.zeros(staggered_shape - np.array([0, 0, 1, 1]))
dirichlet_mask_y[:,0,...] = 1
dirichlet_mask_y[:,-2:,...] = 1
dirichlet_mask_x = math.zeros(staggered_shape - np.array([0, 1, 0, 1]))
dirichlet_mask_x[...,0,:] = 1
dirichlet_mask_x[...,-1,:] = 1
dirichlet_mask_x[:,-1,...] = 1
dirichlet_mask = stack_staggered_components([dirichlet_mask_y, dirichlet_mask_x])
dirichlet_values_y =math.zeros(staggered_shape - np.array([0, 0, 1, 1]))
dirichlet_values_x = math.zeros(staggered_shape - np.array([0, 1, 0, 1]))
dirichlet_values_x[:,-1,...]=1
dirichlet_values = stack_staggered_components([dirichlet_values_y, dirichlet_values_x])
accessible_mask = math.pad(math.ones(staggered_shape + np.array([0, -1, -1, -1])),(0,1,1,0),"constant")
accessible_mask[0,-2,...] = 0
active_mask = math.pad(math.ones(staggered_shape + np.array([0, -1, -1, -1])),(0,1,1,0),"constant")
active_mask[0,-2,...] = 0
no_slip_bool = np.zeros([1,staggered_shape[1]+1, staggered_shape[2]+1,1], dtype=np.bool)
no_slip_bool[0,0,:,0] = 1
no_slip_bool[0,-2:,:,0] = 1
no_slip_bool[0,:,0,0] = 1
no_slip_bool[0,:,-1,0] = 1
no_slip_bool = math.flatten(no_slip_bool)
sim_physics = SimulationParameters(dirichlet_mask=dirichlet_mask.astype(bool), dirichlet_values=dirichlet_values, active_mask= active_mask,
accessible_mask= accessible_mask, bool_periodic= periodic_bool, no_slip_mask=no_slip_bool,
viscosity=1/RE, linear_solver=linear_solver, pressure_solver=pressure_solver)
# PLACEHOLDER DEFINITION ---------------------------------------------------------------------------------------
dt = 0.01
velocity_placeholder = placeholder(shape=staggered_shape, dtype=tf.float32,basename='velocity_placeholder')
velocity = StaggeredGrid.sample(velocity_placeholder,domain=domain)
pressure_placeholder = placeholder(shape=centered_shape, dtype=tf.float32, basename='pressure_placeholder')
pressure = CenteredGrid(pressure_placeholder, box=domain.box, extrapolation=pressure_extrapolation(domain.boundaries))
pressure_inc1 = CenteredGrid(tf.zeros_like(pressure.data), pressure.box, pressure.extrapolation)
pressure_inc2 = CenteredGrid(tf.zeros_like(pressure.data) + 1e-12, pressure.box, pressure.extrapolation)
# SIMULATION STEP
vel_piso, pnew,_ = piso_step(velocity, pressure, pressure_inc1, pressure_inc2, dt, sim_physics, sim_physics.dirichlet_values)
pnew = pnew.data
velnew = vel_piso.staggered_tensor()
# INITIAL CONDITION ---------------------------------------------------------------------------------------
vel_np = StaggeredGrid(np.zeros(staggered_shape), velocity.box)
p_np = CenteredGrid(np.zeros(pressure.data.shape), pressure.box)
np_accuracy=1e-3
save_path = create_base_dir(simulation_data_directory,'/LDC_Re'+str(RE)+'_'+str(N)+'x'+str(N)+'_')
session_config = tf.ConfigProto()
session_config.gpu_options.allow_growth = True
sess = tf.Session(config=session_config)
for i in range(int(25 // dt)):
feed_dict = {velocity_placeholder: vel_np.staggered_tensor(),
pressure_placeholder: p_np.data,
accuracy_placeholder: np_accuracy}
vel_out, p_out = sess.run([velnew, pnew], feed_dict=feed_dict)
vel_np = StaggeredGrid(vel_out, velocity.box)
p_np = CenteredGrid(p_out, pressure.box)
if i%100==0:
rows = 2
columns = 2
f = plt.figure(figsize=(10,10))
plt.subplot(rows, columns, 1)
plt.title(r'$u$')
plt.imshow(vel_out[0, ..., 0])
plt.colorbar()
plt.subplot(rows, columns, 2)
plt.title(r'$v$')
plt.imshow(vel_out[0, ..., 1])
plt.colorbar()
plt.subplot(rows, columns, 3)
plt.title(r'$\omega$')
plt.imshow(vorticity(vel_np)[0, :-1,:, 0])
plt.colorbar()
plt.subplot(rows, columns, 4)
plt.title(r'p')
plt.imshow(p_out[0, ..., 0])
plt.colorbar()
plt.savefig(save_path+'/plot_'+str(i))
plt.close()
np.savez(save_path+'/velocity_'+str(i).zfill(6)+'.npz', vel_out)
np.savez(save_path+'/pressure_'+str(i).zfill(6)+'.npz', p_out)
print('step',i)
if i==5:
np_accuracy = 1e-8
np.savez(save_path+'/velocity_'+str(i).zfill(6)+'.npz', vel_out)
np.savez(save_path+'/pressure_'+str(i).zfill(6)+'.npz', p_out)
print('done')