-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathprocess_results.py
163 lines (134 loc) · 4.83 KB
/
process_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import matplotlib.pyplot as plt
from roct.upper_bound import maximum_adversarial_accuracy
import seaborn as sns
sns.set_theme(context="paper", style="whitegrid", palette="colorblind", font_scale=0.8)
import pandas as pd
import numpy as np
# Avoid type 3 fonts
import matplotlib
matplotlib.rcParams["pdf.fonttype"] = 42
matplotlib.rcParams["ps.fonttype"] = 42
from tqdm import tqdm
import os
import json
result_dir = "out/results/"
figure_dir = "out/figures/"
data_dir = "data/"
results = []
for result_name in tqdm(os.listdir(result_dir)):
filename = result_dir + result_name
with open(filename) as file:
result = json.load(file)
dataset, algorithm, epsilon = result_name[:-5].split("_")
# Load datasets
X_train = np.load(data_dir + f"X_train_{dataset}.npy")
X_test = np.load(data_dir + f"X_test_{dataset}.npy")
y_train = np.load(data_dir + f"y_train_{dataset}.npy")
y_test = np.load(data_dir + f"y_test_{dataset}.npy")
if algorithm == "treant" or "rc2-maxsat":
# Count a timeout if the algorithm selected a tree with depth 0
timeout = "leaf" in result["model"][0] and result["best_depth"] != 0
else:
timeout = False
# Determine adversarial accuracy bound
X = np.concatenate((X_train, X_test))
y = np.concatenate((y_train, y_test))
Delta_l = Delta_r = np.full(X.shape[1], fill_value=float(epsilon))
adv_acc_bound = maximum_adversarial_accuracy(X, y, Delta_l, Delta_r)
train_adv_acc_bound = maximum_adversarial_accuracy(X_train, y_train, Delta_l, Delta_r)
test_adv_acc_bound = maximum_adversarial_accuracy(X_test, y_test, Delta_l, Delta_r)
results.append(
(
dataset,
epsilon,
algorithm,
result["best_depth"],
result["train_accuracy"],
result["train_adv_accuracy"],
result["test_accuracy"],
result["test_adv_accuracy"],
adv_acc_bound,
train_adv_acc_bound,
test_adv_acc_bound,
timeout,
)
)
columns = [
"Dataset",
"Epsilon",
"Algorithm",
"Best depth",
"Train accuracy",
"Train adversarial accuracy",
"Test accuracy",
"Test adversarial accuracy",
"Adversarial accuracy bound",
"Train adversarial accuracy bound",
"Test adversarial accuracy bound",
"Timeout",
]
result_df = pd.DataFrame(results, columns=columns)
algorithm_names = {
"tree": "Decision Tree",
"treant": "TREANT",
"groot": "GROOT",
"lsu-maxsat": "LSU-MaxSAT",
"rc2-maxsat": "RC2-MaxSAT",
"milp": "MILP",
"bin-milp": "Binary-MILP",
"milp-warm": "MILP-warm",
"bin-milp-warm": "Binary-MILP-warm",
}
result_df["Algorithm"] = result_df["Algorithm"].map(algorithm_names)
print(result_df["Algorithm"].value_counts())
mean_scores = result_df[["Algorithm", "Test adversarial accuracy"]].groupby("Algorithm").mean()
order = mean_scores.sort_values(by="Test adversarial accuracy").index
result_table = result_df.pivot_table(
values="Test adversarial accuracy",
index=["Dataset", "Epsilon"],
columns="Algorithm",
fill_value=0.0,
)
result_table = result_table[list(algorithm_names.values())]
result_table = result_table[order]
latex_result_table = result_table.copy()
# Output latex table with bold values
format_string = "%.3f"
maxima = latex_result_table.max(axis=1)
for i, row in latex_result_table.iterrows():
latex_result_table.loc[row.name] = row.apply(
lambda x: ("\\textbf{%s}" % format_string % x)
if x == maxima[i]
else ("%s" % format_string % x)
)
print(latex_result_table.to_latex(escape=False))
latex_result_table.to_latex("out/figures/result_table.tex", escape=False)
# Output table of selected max_depth values
depth_table = result_df.pivot_table(
values="Best depth",
index=["Dataset", "Epsilon"],
columns="Algorithm",
fill_value=0.0,
)
depth_table = depth_table[list(algorithm_names.values())]
depth_table = depth_table[order]
depth_table.to_latex("out/figures/depth_table.tex")
# Number of wins and tied wins
rank_table = result_table.rank(axis=1, method="min", ascending=False)
# print(rank_table)
wins_df = (rank_table == 1).sum(axis=0)
print(wins_df)
# Average rank
mean_rank_df = rank_table.mean(axis=0)
sem_rank_df = rank_table.sem(axis=0)
print(mean_rank_df)
# Number of timeouts
timeouts_df = result_df.groupby("Algorithm")["Timeout"].sum()
print(timeouts_df)
# Summarize aggregate scores in a table
mean_score_df = result_table.mean(axis=0)
sem_score_df = result_table.sem(axis=0)
agg_score_df = pd.concat((mean_score_df, sem_score_df, mean_rank_df, sem_rank_df, wins_df), axis=1)
agg_score_df.columns = ["Mean adversarial accuracy", "Standard error adversarial accuracy", "Mean rank", "Standard error rank", "Number of wins"]
print(agg_score_df)
agg_score_df.to_latex(figure_dir + "aggregate_scores.tex", float_format="%.3f")