forked from svip-lab/impersonator
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo_view.py
177 lines (129 loc) · 5.07 KB
/
demo_view.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import numpy as np
from tqdm import tqdm
import cv2
import os
import glob
from models.imitator import Imitator
from models.viewer import Viewer
from options.test_options import TestOptions
from utils.visdom_visualizer import VisdomVisualizer
from utils.video import make_video
from utils.util import mkdir
from run_imitator import adaptive_personalize
def clean(output_dir):
for item in ['imgs', 'pairs', 'mixamo_preds', 'pairs_meta.pkl', 'T_novel_view_preds']:
filepath = os.path.join(output_dir, item)
if os.path.exists(filepath):
os.system("rm -r %s" % filepath)
def tensor2cv2(img_tensor):
img = (img_tensor[0].detach().cpu().numpy().transpose(1, 2, 0) + 1) / 2
img = img[:, :, ::-1]
img = (img * 255).astype(np.uint8)
return img
def parse_view_params(view_params):
"""
:param view_params: R=xxx,xxx,xxx/t=xxx,xxx,xxx
:return:
-R: np.ndarray, (3,)
-t: np.ndarray, (3,)
"""
params = dict()
for segment in view_params.split('/'):
# R=xxx,xxx,xxx -> (name, xxx,xxx,xxx)
name, params_str = segment.split('=')
vals = [float(val) for val in params_str.split(',')]
params[name] = np.array(vals, dtype=np.float32)
params['R'] = params['R'] / 180 * np.pi
return params
def create_T_pose_novel_view_smpl():
from scipy.spatial.transform import Rotation as R
# cam + pose + shape
smpls = np.zeros((180, 75))
for i in range(180):
r1 = R.from_rotvec([0, 0, 0])
r2 = R.from_euler("xyz", [180, i * 2, 0], degrees=True)
r = (r1 * r2).as_rotvec()
smpls[i, 3:6] = r
return smpls
def generate_T_pose_novel_view_result(test_opt, src_img_path):
imitator = Imitator(test_opt)
src_img_name = os.path.split(src_img_path)[-1][:-4]
test_opt.src_path = src_img_path
if test_opt.post_tune:
adaptive_personalize(test_opt, imitator, visualizer=None)
else:
imitator.personalize(test_opt.src_path, visualizer=None)
if test_opt.output_dir:
pred_output_dir = os.path.join(test_opt.output_dir, 'T_novel_view_preds')
if os.path.exists(pred_output_dir):
os.system("rm -r %s" % pred_output_dir)
mkdir(pred_output_dir)
else:
pred_output_dir = None
print(pred_output_dir)
tgt_smpls = create_T_pose_novel_view_smpl()
imitator.inference_by_smpls(tgt_smpls, cam_strategy='smooth', output_dir=pred_output_dir, visualizer=None)
save_dir = os.path.join(test_opt.output_dir, src_img_name)
mkdir(save_dir)
output_mp4_path = os.path.join(save_dir, 'T_novel_view_%s.mp4' % src_img_name)
img_path_list = sorted(glob.glob('%s/*.jpg' % pred_output_dir))
make_video(output_mp4_path, img_path_list, save_frames_dir=None, fps=30)
# clean other left
clean(test_opt.output_dir)
def generate_orig_pose_novel_view_result(opt, src_path):
opt.src_path = src_path
# set imitator
viewer = Viewer(opt)
if opt.ip:
visualizer = VisdomVisualizer(env=opt.name, ip=opt.ip, port=opt.port)
else:
visualizer = None
if opt.post_tune:
adaptive_personalize(opt, viewer, visualizer)
viewer.personalize(opt.src_path, visualizer=visualizer)
print('\n\t\t\tPersonalization: completed...')
view_params = opt.view_params
params = parse_view_params(view_params)
length = 180
delta = 360 / length
logger = tqdm(range(length))
src_img_true_name = os.path.split(opt.src_path)[-1][:-4]
save_dir = os.path.join(opt.output_dir, src_img_true_name)
mkdir(os.path.join(save_dir, 'imgs'))
print('\n\t\t\tSynthesizing {} novel views'.format(length))
for i in logger:
params['R'][0] = 0
params['R'][1] = delta * i / 180.0 * np.pi
params['R'][2] = 0
preds = viewer.view(params['R'], params['t'], visualizer=None, name=str(i))
# pred_outs.append(preds)
save_img_name = '%s.%d.jpg' % (os.path.split(opt.src_path)[-1], delta * i)
cv2.imwrite('%s/imgs/%s' % (save_dir, save_img_name), tensor2cv2(preds))
"""
make video
"""
img_path_list = glob.glob("%s/imgs/*.jpg" % save_dir)
output_mp4_path = '%s/%s.mp4' % (save_dir, src_img_true_name)
make_video(output_mp4_path, img_path_list, save_frames_dir=None, fps=30)
clean(opt.output_dir)
clean(save_dir)
if __name__ == "__main__":
opt = TestOptions().parse()
opt.bg_ks = 31
opt.T_pose = False
opt.front_warp = False
opt.bg_replace = True
opt.post_tune = True
opt.output_dir = './outputs/results/demos/viewers'
src_path_list = [
('iPER', './assets/src_imgs/imper_Random_Pose/novel_3.jpg'),
('Fashion', './assets/src_imgs/fashion_woman/fashionWOMENDressesid0000271801_4full.jpg'),
('Fashion', './assets/src_imgs/fashion_man/Jackets_Vests-id_0000071603_4_full.jpg')
]
for dataset, src_path in src_path_list:
if dataset == 'Fashion':
opt.T_pose = True
generate_T_pose_novel_view_result(opt, src_path)
else:
opt.T_pose = False
generate_orig_pose_novel_view_result(opt, src_path)