-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMoreCat.agda
57 lines (49 loc) · 2.56 KB
/
MoreCat.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
{-# OPTIONS --without-K #-}
module MoreCat where
open import CatSem
open import Terms
open import Categories.Object.Terminal ContextCategory
open import Categories.Object.Product ContextCategory
open import Categories.Morphism ContextCategory
open import Data.Product renaming (_,_ to ⟨_,_⟩)
open import Data.Sum
open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; cong)
∅-isTerminal : IsTerminal ∅
∅-isTerminal = record { ! = λ () ; !-unique = λ f → subst-≡ λ () }
module _ {Γ Δ : Context} where
combine : ∀ {Θ} → Subst Θ Γ → Subst Θ Δ → Subst Θ (Γ ++ Δ)
combine ρ σ x with ++-∋ Γ Δ x
... | inj₁ ⟨ x' , refl ⟩ = ρ x'
... | inj₂ ⟨ x' , refl ⟩ = σ x'
combine-liftˡ : ∀ {Θ A} {ρ : Subst Θ Γ} {σ : Subst Θ Δ} (x : Γ ∋ A) → combine ρ σ (liftˡ Δ x) ≡ ρ x
combine-liftˡ x rewrite ++-∋-liftˡ {E = Δ} x = refl
combine-liftʳ : ∀ {Θ A} {ρ : Subst Θ Γ} {σ : Subst Θ Δ} (x : Δ ∋ A) → combine ρ σ (liftʳ Γ x) ≡ σ x
combine-liftʳ x rewrite ++-∋-liftʳ {Γ = Γ} x = refl
combine-proj : ∀ {Θ A} {ρ : Subst Θ Γ} {σ : Subst Θ Δ} {ρσ : Subst Θ (Γ ++ Δ)} →
ρ ≡ₛ (λ x → ` liftˡ Δ x) ∘ₛ ρσ → σ ≡ₛ (λ x → ` liftʳ Γ x) ∘ₛ ρσ → ∀ (x : Γ ++ Δ ∋ A) → ρσ x ≡ combine ρ σ x
combine-proj e₁ e₂ rewrite e₁ | e₂ = helper
where
helper : ∀ {Θ A} {ρσ : Subst Θ (Γ ++ Δ)} (x : Γ ++ Δ ∋ A) →
ρσ x ≡ combine (λ x → ρσ (liftˡ Δ x)) (λ x → ρσ (liftʳ Γ x)) x
helper x with ++-∋ Γ Δ x
... | inj₁ ⟨ x' , refl ⟩ = refl
... | inj₂ ⟨ x' , refl ⟩ = refl
++-Product : Product Γ Δ
++-Product = record
{ A×B = Γ ++ Δ
; π₁ = λ x → ` liftˡ Δ x
; π₂ = λ x → ` liftʳ Γ x
; ⟨_,_⟩ = combine
; project₁ = subst-≡ combine-liftˡ
; project₂ = subst-≡ combine-liftʳ
; unique = λ e₁ e₂ → subst-≡ λ x → sym (combine-proj (sym e₁) (sym e₂) x)
}
module _ {A B : Type} where
⊗≅, : (∅ , A , B) ≅ (∅ , A ⊗ B)
⊗≅, = record
{ from = λ{head → ⟪ # 1 , # 0 ⟫}
; to = λ{head → case # 0 [⟪,⟫⇒ # 0 ]; (tail head) → case # 0 [⟪,⟫⇒ # 1 ]}
; iso = record
{ isoˡ = subst-≡ λ{head → {!!}; (tail head) → {!!}}
; isoʳ = {!!} }
}