-
Notifications
You must be signed in to change notification settings - Fork 91
/
Copy pathserver.R
192 lines (153 loc) · 6.9 KB
/
server.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
library(shiny)
library(maps)
library(geosphere)
source("helpers.R")
shinyServer(function(input, output, session) {
vals = reactiveValues()
map_name = reactive({
tolower(input$map_name)
})
set_random_cities = reactive({
input$set_random_cities + input$set_random_cities_2
})
city_choices = reactive({
if (map_name() == "world") {
return(all_cities)
} else if (map_name() == "usa") {
return(usa_cities)
}
})
update_allowed_cities = observe({
if (isolate(input$go_button) == 0 & isolate(set_random_cities()) == 0 & map_name() == "world") return()
updateSelectizeInput(session, "cities", choices=city_choices()$full.name)
}, priority=500)
one_time_initialization = observe({
isolate({
cty = subset(city_choices(), full.name %in% seed_cities)
cty$n = 1:nrow(cty)
updateSelectizeInput(session, "cities", selected=cty$full.name)
vals$cities = cty
vals$distance_matrix = readRDS("data/distance_matrix.rds")
vals$great_circles = readRDS("data/great_circles.rds")
})
}, priority=1000)
set_cities_randomly = observe({
if (set_random_cities() == 0 & map_name() == "world") return()
run_annealing_process$suspend()
isolate({
if (map_name() == "world") {
cty = generate_random_cities(n=20, min_dist=500)
} else if (map_name() == "usa") {
cty = generate_random_cities(n=20, min_dist=50, usa_only=TRUE)
}
cty$n = 1:nrow(cty)
updateSelectizeInput(session, "cities", selected=cty$full.name)
vals$cities = cty
})
}, priority=100)
set_cities_from_selected = observe({
if (input$go_button == 0) return()
run_annealing_process$suspend()
isolate({
cty = subset(city_choices(), full.name %in% input$cities)
if (nrow(cty) == 0 | identical(sort(cty$full.name), sort(vals$cities$full.name))) return()
cty$n = 1:nrow(cty)
vals$cities = cty
})
}, priority=50)
set_dist_matrix_and_great_circles = observe({
if (input$go_button == 0 & set_random_cities() == 0 & map_name() == "world") return()
isolate({
if (nrow(vals$cities) < 2) return()
if (identical(sort(vals$cities$name), sort(colnames(vals$distance_matrix)))) return()
dist_mat = distm(vals$cities[,c("long", "lat")]) * miles_per_meter
dimnames(dist_mat) = list(vals$cities$name, vals$cities$name)
vals$distance_matrix = dist_mat
vals$great_circles = calculate_great_circles(vals$cities)
})
}, priority=40)
setup_to_run_annealing_process = observe({
input$go_button
set_random_cities()
map_name()
isolate({
vals$tour = sample(nrow(vals$cities))
vals$tour_distance = calculate_tour_distance(vals$tour, vals$distance_matrix)
vals$best_tour = c()
vals$best_distance = Inf
vals$s_curve_amplitude = ensure_between(input$s_curve_amplitude, 0, 1000000)
vals$s_curve_center = ensure_between(input$s_curve_center, -1000000, 1000000)
vals$s_curve_width = ensure_between(input$s_curve_width, 1, 1000000)
vals$total_iterations = ensure_between(input$total_iterations, 1, 1000000)
vals$plot_every_iterations = ensure_between(input$plot_every_iterations, 1, 1000000)
vals$number_of_loops = ceiling(vals$total_iterations / vals$plot_every_iterations)
vals$distances = rep(NA, vals$number_of_loops)
vals$iter = 0
})
run_annealing_process$resume()
}, priority=20)
run_annealing_process = observe({
qry = parseQueryString(session$clientData$url_search)
if (input$go_button == 0 & is.null(qry$auto)) return()
if (nrow(isolate(vals$cities)) < 2) return()
isolate({
intermediate_results = run_intermediate_annealing_process(
cities = vals$cities,
distance_matrix = vals$distance_matrix,
tour = vals$tour,
tour_distance = vals$tour_distance,
best_tour = vals$best_tour,
best_distance = vals$best_distance,
starting_iteration = vals$iter,
number_of_iterations = vals$plot_every_iterations,
s_curve_amplitude = vals$s_curve_amplitude,
s_curve_center = vals$s_curve_center,
s_curve_width = vals$s_curve_width
)
vals$tour = intermediate_results$tour
vals$tour_distance = intermediate_results$tour_distance
vals$best_tour = intermediate_results$best_tour
vals$best_distance = intermediate_results$best_distance
vals$iter = vals$iter + vals$plot_every_iterations
vals$distances[ceiling(vals$iter / vals$plot_every_iterations)] = intermediate_results$tour_distance
})
if (isolate(vals$iter) < isolate(vals$total_iterations)) {
invalidateLater(0, session)
} else {
isolate({
vals$tour = vals$best_tour
vals$tour_distance = vals$best_distance
})
}
}, priority=10)
output$map = renderPlot({
plot_tour(vals$cities, vals$tour, vals$great_circles, map_name=tolower(input$map_name), label_cities=input$label_cities)
if (length(vals$tour) > 1) {
pretty_dist = prettyNum(vals$tour_distance, big.mark=",", digits=0, scientific=FALSE)
pretty_iter = prettyNum(vals$iter, big.mark=",", digits=0, scientific=FALSE)
pretty_temp = prettyNum(current_temperature(vals$iter, vals$s_curve_amplitude, vals$s_curve_center, vals$s_curve_width),
big.mark=",", digits=0, scientific=FALSE)
plot_title = paste0("Distance: ", pretty_dist, " miles\n",
"Iterations: ", pretty_iter, "\n",
"Temperature: ", pretty_temp)
title(plot_title)
}
}, height=550)
output$annealing_schedule = renderPlot({
xvals = seq(from=0, to=vals$total_iterations, length.out=100)
yvals = current_temperature(xvals, vals$s_curve_amplitude, vals$s_curve_center, vals$s_curve_width)
plot(xvals, yvals, type='l', xlab="iterations", ylab="temperature", main="Annealing Schedule")
points(vals$iter, current_temperature(vals$iter, vals$s_curve_amplitude, vals$s_curve_center, vals$s_curve_width), pch=19, col='red')
}, height=260)
output$distance_results = renderPlot({
if (all(is.na(vals$distances))) return()
xvals = vals$plot_every_iterations * (1:vals$number_of_loops)
plot(xvals, vals$distances, type='o', pch=19, cex=0.7,
ylim=c(0, max(vals$distances, na.rm=TRUE)), xlab="iterations", ylab="current tour distance",
main="Evolution of Current Tour Distance")
}, height=260)
session$onSessionEnded(function() {
run_annealing_process$suspend()
set_cities_randomly$suspend()
})
})