forked from tyagi-iiitv/PointPillars
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpoint_pillars_evaluation_v2_2.py
158 lines (117 loc) · 7.66 KB
/
point_pillars_evaluation_v2_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import os
from glob import glob
import numpy as np
import tensorflow as tf
from point_pillars_custom_processors_v2_2 import CustomDataGenerator, AnalyseCustomDataGenerator
from inference_utils_v2_2 import generate_bboxes_from_pred
from inference_utils_v2_2 import focal_loss_checker, rotational_nms, generate_bboxes_from_pred_and_np_array, convert_boxes_to_list
# from readers import KittiDataReader
from config_v2_2 import Parameters
from network_v2_2 import build_point_pillar_graph
from datetime import datetime
from det3d.kitti_dataset.utils.evaluation import save_kitti_format, save_kitti_format_for_evaluation
from point_viz.converter import PointvizConverter
DATA_ROOT = "/media/data3/tjtanaa/kitti_dataset/"
MODEL_ROOT = "./logs_Car_Custom_Dataset_No_Early_Stopping_wo_Aug_wo_val_new_network"
KITTI_EVALUATION_OUTPUT = os.path.join(MODEL_ROOT, "Evaluation")
if not os.path.exists(KITTI_EVALUATION_OUTPUT):
os.makedirs(KITTI_EVALUATION_OUTPUT)
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "3"
def limit_period(val, offset=0.5, period=np.pi):
return val - np.floor(val / period + offset) * period
if __name__ == "__main__":
params = Parameters()
pillar_net = build_point_pillar_graph(params)
pillar_net.load_weights(os.path.join(MODEL_ROOT, "model.h5"))
pillar_net.summary()
# save_viz_path = "/home/tan/tjtanaa/PointPillars/visualization/custom_prediction_multiprocessing"
save_viz_path = os.path.join("/home/tan/tjtanaa/PointPillars/visualization", MODEL_ROOT.split('/')[-1])
# Initialize and setup output directory.
Converter = PointvizConverter(save_viz_path)
gt_database_dir = os.path.join(DATA_ROOT, "gt_database")
validation_gen = AnalyseCustomDataGenerator(batch_size=params.batch_size, root_dir=DATA_ROOT,
npoints=20000, split='train_val_test',random_select=False, classes=list(params.classes_map.keys()))
inference_duration = []
sample_index = 0 # has to be controlled manually to ensure that the sequence number is continuous
for batch_idx in range(0,len(validation_gen)):
[pillars, voxels], [occupancy_, position_, size_, angle_, heading_], [pts_input, gt_boxes3d, sample] = validation_gen[batch_idx]
start=datetime.now()
occupancy, position, size, angle, heading = pillar_net.predict([pillars, voxels])
inference_duration.append( datetime.now()-start)
classification = np.zeros(shape=np.array(occupancy).shape)
classification_ = classification
set_boxes, confidences = [], []
loop_range = occupancy_.shape[0] if len(occupancy_.shape) == 4 else 1
for i in range(loop_range):
set_box, predicted_boxes3d = generate_bboxes_from_pred_and_np_array(occupancy[i], position[i], size[i], angle[i],
heading[i],
classification[i], params.anchor_dims, occ_threshold=0.5)
_, decoded_gt_boxes3d = generate_bboxes_from_pred_and_np_array(occupancy_[i], position_[i], size_[i], angle_[i],
heading_[i],
classification_[i], params.anchor_dims, occ_threshold=0.4)
# gt_boxes3d_ = gt_boxes3d[i]
gt_boxes3d_ = decoded_gt_boxes3d
print(gt_boxes3d_.shape)
if(len(gt_boxes3d_) == 0):
gt_bbox_params_list = []
else:
gt_bbox_params = np.stack([gt_boxes3d_[:,3], gt_boxes3d_[:,5], gt_boxes3d_[:,4],
gt_boxes3d_[:,1], gt_boxes3d_[:,2] ,
gt_boxes3d_[:,0],
gt_boxes3d_[:,6]], axis=1)
gt_bbox_params_list = gt_bbox_params.tolist()
# gt_bbox_params_list = []
for k in range(len(gt_bbox_params_list)):
msg = "%.5f, %s, %.5f"%(decoded_gt_boxes3d[k,9], params.map_classes[int(decoded_gt_boxes3d[k,8])], decoded_gt_boxes3d[k,6])
# msg = "%.5f, %.5f"%(gt_bbox_params_list[k][3],gt_bbox_params_list[k][5])
gt_bbox_params_list[k].append("Green")
# gt_bbox_params_list[k].append("1.0")
gt_bbox_params_list[k].append(msg)
if len(set_box) > 0:
# NMS
# set_box
# print("start nms")
confidence = [float(box.conf) for box in set_box]
nms_boxes = rotational_nms([set_box], [confidence], occ_threshold=0.5, nms_iou_thr=0.5)
predicted_boxes3d_list = convert_boxes_to_list(nms_boxes)
predicted_boxes3d = np.array(predicted_boxes3d_list[0])
predicted_boxes3d_ = predicted_boxes3d
print("batch_idx: ", batch_idx * params.batch_size + i, " has ", predicted_boxes3d_.shape, "predictions")
bbox_params = np.stack([predicted_boxes3d_[:,3], predicted_boxes3d_[:,5], predicted_boxes3d_[:,4],
predicted_boxes3d_[:,1], predicted_boxes3d_[:,2] ,
predicted_boxes3d_[:,0],
predicted_boxes3d_[:,6]], axis=1)
bbox_params_list = bbox_params.tolist()
# bbox_labels_conf = [str(predicted_boxes3d[k,9]) for k in range(predicted_boxes3d.shape[0])]
for k in range(predicted_boxes3d.shape[0]):
msg = "%.5f, %s, %.5f"%(predicted_boxes3d[k,9],params.map_classes[int(predicted_boxes3d[k,8])], predicted_boxes3d[k,6])
bbox_params_list[k].append("Magenta")
bbox_params_list[k].append(msg)
# bbox_params_list[k].append(str(predicted_boxes3d[k,9]) + "=" + params.map_classes[int(predicted_boxes3d[k,8])])
gt_bbox_params_list.append(bbox_params_list[k])
# save as kitti format for evaluation
cur_sample_id = batch_idx * params.batch_size + i
sample_file_name = validation_gen.sample_id_list[cur_sample_id]
calib = sample[i]['calib']
# cur_boxes3d = cur_boxes3d.cpu().numpy()
cur_boxes3d_xyz = calib.lidar_to_rect(predicted_boxes3d[:, 0:3])
cur_boxes3d = np.concatenate((
cur_boxes3d_xyz[:,0,np.newaxis], # 0 x
cur_boxes3d_xyz[:,1,np.newaxis] + predicted_boxes3d[:,5,np.newaxis] / 2, # 1 y
cur_boxes3d_xyz[:,2,np.newaxis], # 2 z
predicted_boxes3d[:,5,np.newaxis], # 3 l # same as the original label
predicted_boxes3d[:,4,np.newaxis], # 4 w # same as the original label
predicted_boxes3d[:,3,np.newaxis], # 5 h # same as the original label
-predicted_boxes3d[:,6,np.newaxis], # 6 ry
), axis=1)
cur_scores_raw = predicted_boxes3d[:,-1]
image_shape = validation_gen.get_image_shape(sample_file_name)
labels_obj = validation_gen.get_label(sample_file_name)
classes = ['Car' for i in range(len(predicted_boxes3d))]
save_kitti_format_for_evaluation(sample_index, calib, cur_boxes3d, KITTI_EVALUATION_OUTPUT, cur_scores_raw, image_shape, classes, labels_obj)
sample_index += 1
coor = pts_input[i][:,[1,2,0]]
Converter.compile("evaluation_sample_{}".format(batch_idx * params.batch_size+i), coors=coor, intensity=pts_input[i][:,3],
bbox_params=gt_bbox_params_list)
# print("Average runtime speed: ", np.mean(inference_duration[20:]))