-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathadabound_tf.py
132 lines (109 loc) · 5.07 KB
/
adabound_tf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import tensorflow as tf
from tensorflow.python.keras.optimizer_v2.optimizer_v2 import OptimizerV2
class AdaBound(OptimizerV2):
"""AdaBound optimizer.
Default parameters follow those provided in the original paper.
# Arguments
learning_rate: float >= 0. Learning rate.
final_learning_rate: float >= 0. Final learning rate.
beta_1: float, 0 < beta < 1. Generally close to 1.
beta_2: float, 0 < beta < 1. Generally close to 1.
gamma: float >= 0. Convergence speed of the bound function.
epsilon: float >= 0. Fuzz factor. If `None`, defaults to `K.epsilon()`.
decay: float >= 0. Learning rate decay over each update.
weight_decay: Weight decay weight.
amsbound: boolean. Whether to apply the AMSBound variant of this
algorithm.
# References
- [Adaptive Gradient Methods with Dynamic Bound of Learning Rate]
(https://openreview.net/forum?id=Bkg3g2R9FX)
- [Adam - A Method for Stochastic Optimization]
(https://arxiv.org/abs/1412.6980v8)
- [On the Convergence of Adam and Beyond]
(https://openreview.net/forum?id=ryQu7f-RZ)
"""
def __init__(self,
learning_rate=0.001,
final_learning_rate=0.1,
beta_1=0.9,
beta_2=0.999,
gamma=1e-3,
epsilon=None,
weight_decay=0.0,
amsbound=False,
name='AdaBound', **kwargs):
super(AdaBound, self).__init__(name, **kwargs)
self._set_hyper('learning_rate', kwargs.get('learning_rate', learning_rate))
self._set_hyper('final_learning_rate', kwargs.get('final_learning_rate', final_learning_rate))
self._set_hyper('beta_1', beta_1)
self._set_hyper('beta_2', beta_2)
self._set_hyper('decay', self._initial_decay)
self._set_hyper('gamma', gamma)
self.epsilon = epsilon or tf.keras.backend.epsilon()
self.amsbound = amsbound
self.weight_decay = weight_decay
self.base_lr = learning_rate
def _create_slots(self, var_list):
for var in var_list:
self.add_slot(var, 'm')
self.add_slot(var, 'v')
self.add_slot(var, 'vhat')
def _resource_apply_dense(self, grad, var):
var_dtype = var.dtype.base_dtype
lr_t = self._decayed_lr(var_dtype)
m = self.get_slot(var, 'm')
v = self.get_slot(var, 'v')
vhat = self.get_slot(var, 'vhat')
beta_1_t = self._get_hyper('beta_1', var_dtype)
beta_2_t = self._get_hyper('beta_2', var_dtype)
gamma = self._get_hyper('gamma')
final_lr = self._get_hyper('final_learning_rate')
epsilon_t = tf.convert_to_tensor(self.epsilon, var_dtype)
base_lr_t = tf.convert_to_tensor(self.base_lr)
t = tf.cast(self.iterations + 1, var_dtype)
# Applies bounds on actual learning rate
step_size = lr_t * (tf.math.sqrt(1. - tf.math.pow(beta_2_t, t)) /
(1. - tf.math.pow(beta_1_t, t)))
final_lr = final_lr * lr_t / base_lr_t
lower_bound = final_lr * (1. - 1. / (gamma * t + 1.))
upper_bound = final_lr * (1. + 1. / (gamma * t))
# apply weight decay
if self.weight_decay != 0.:
grad += self.weight_decay * var
# Compute moments
m_t = (beta_1_t * m) + (1. - beta_1_t) * grad
v_t = (beta_2_t * v) + (1. - beta_2_t) * tf.math.square(grad)
if self.amsbound:
vhat_t = tf.math.maximum(vhat, v_t)
denom = (tf.math.sqrt(vhat_t) + epsilon_t)
else:
vhat_t = vhat
denom = (tf.math.sqrt(v_t) + self.epsilon)
# Compute the bounds
step_size_p = step_size * tf.ones_like(denom)
step_size_p_bound = step_size_p / denom
bounded_lr_t = m_t * tf.math.minimum(tf.math.maximum(step_size_p_bound,
lower_bound), upper_bound)
# Setup updates
m_t = tf.compat.v1.assign(m, m_t)
vhat_t = tf.compat.v1.assign(vhat, vhat_t)
with tf.control_dependencies([m_t, v_t, vhat_t]):
p_t = var - bounded_lr_t
param_update = tf.compat.v1.assign(var, p_t)
return tf.group(*[param_update, m_t, v_t, vhat_t])
def _resource_apply_sparse(self, grad, handle, indices):
raise NotImplementedError("Sparse data is not supported yet")
def get_config(self):
config = super(AdaBound, self).get_config()
config.update({
'learning_rate': self._serialize_hyperparameter('learning_rate'),
'final_learning_rate': self._serialize_hyperparameter('final_learning_rate'),
'decay': self._serialize_hyperparameter('decay'),
'beta_1': self._serialize_hyperparameter('beta_1'),
'beta_2': self._serialize_hyperparameter('beta_2'),
'gamma': self._serialize_hyperparameter('gamma'),
'epsilon': self.epsilon,
'weight_decay': self.weight_decay,
'amsbound': self.amsbound,
})
return config