-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathdraw_display.py
299 lines (254 loc) · 10.2 KB
/
draw_display.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import cv2
import numpy as np
from math import cos, sin, pi, radians
FULL_ROTATION = 360
FULL_ROTATION_RADIANS = 2 * pi
def _restrict(val, upper_bound:float=1, lower_bound:float=-1):
"""
Restricts the provided value with the provided upper bound and lower bound
"""
if val > upper_bound:
val = upper_bound
elif val < lower_bound:
val = lower_bound
return val
def _find_points(m: float, b: float, frame_shape: tuple) -> list:
""""
Given the slope (m), y intercept (b) and the frame shape (frame_shape),
find the two points of the line that intersect with the border of the frame.
"""
# special condition if slope is 0
if m == 0:
b = int(np.round(b))
p1 = (0, b)
p2 = (frame_shape[1], b)
return [p1, p2]
points_to_return = []
# left
if 0 < b <= frame_shape[0]:
px = 0
py = int(np.round(b))
points_to_return.append((px, py))
# top
if 0 < -b / m <= frame_shape[1]:
px = int(np.round(-b / m))
py = 0
points_to_return.append((px, py))
# right
if 0 < m * frame_shape[1] + b <= frame_shape[0]:
px = frame_shape[1]
py = int(np.round(m * frame_shape[1] + b))
points_to_return.append((px, py))
# bottom
if 0 < (frame_shape[0] - b) / m <= frame_shape[1]:
px = int(np.round((frame_shape[0] - b) / m))
py = frame_shape[0]
points_to_return.append((px, py))
return points_to_return
def draw_roi(frame: np.ndarray, crop_and_scale_parameters: dict) -> np.ndarray:
"""
Draws the region of interest onto the frame, i.e. the region where
horizon detection occurs.
frame: the frame to draw on
crop_and_scale_parameters: parameters obtained by crop_and_scale.get_cropping_and_scaling_parameters
"""
# extract some relevant values from the dictionary
cropping_start= crop_and_scale_parameters['cropping_start']
cropping_end = crop_and_scale_parameters['cropping_end']
p1 = (cropping_start, 0)
p2 = (cropping_start, frame.shape[1])
p3 = (cropping_end, 0)
p4 = (cropping_end, frame.shape[1])
# define the color
off_white = (215, 215, 215)
# draw the lines
cv2.line(frame, p1, p2, off_white, 1)
cv2.line(frame, p3, p4, off_white, 1)
def draw_hud(frame: np.ndarray, roll: float , pitch: float, fps: float,
is_good_horizon: bool, recording: bool = False) -> np.ndarray:
# draw roll and pitch text
if roll and is_good_horizon:
roll = int(np.round(roll))
pitch = int(np.round(pitch))
color = (255, 0, 0)
else:
roll = ''
pitch = ''
color = (0,0,255)
# round fps
fps = np.round(fps, decimals=2)
cv2.putText(frame, f"Roll: {roll}",(20,40),cv2.FONT_HERSHEY_COMPLEX_SMALL,1,color,1,cv2.LINE_AA)
cv2.putText(frame, f"Pitch: {pitch}",(20,80),cv2.FONT_HERSHEY_COMPLEX_SMALL,1,color,1,cv2.LINE_AA)
cv2.putText(frame, f"FPS: {fps}",(20,120),cv2.FONT_HERSHEY_COMPLEX_SMALL,1,(255,0,0),1,cv2.LINE_AA)
# draw recording text
if recording:
position = (frame.shape[1] - 140, 40)
color = (0,0,255)
cv2.putText(frame, "Recording", position,cv2.FONT_HERSHEY_COMPLEX_SMALL,1,color,1,cv2.LINE_AA)
return frame
def draw_horizon(frame: np.ndarray, roll: float , pitch: float,
fov: float, color: tuple, draw_groundline: bool):
# if no horizon data is provided, terminate function early and return
if roll is None:
return
# take roll in degrees and express it in terms of radians
roll = radians(roll)
# determine if the sky is up or down based on the roll
sky_is_up = (roll >= FULL_ROTATION_RADIANS * .75 or (roll > 0 and roll <= FULL_ROTATION_RADIANS * .25))
# find the distance
distance = pitch / fov * frame.shape[0]
# define the line perpendicular to horizon
angle_perp = roll + pi / 2
x_perp = distance * cos(angle_perp) + frame.shape[1]/2
y_perp = distance * sin(angle_perp) + frame.shape[0]/2
# define the horizon line
run = cos(roll)
rise = sin(roll)
if run != 0:
m = rise / run
b = y_perp - m * x_perp
points = _find_points(m, b, frame.shape)
if not points:
return
else:
p1, p2 = points
else:
p1 = (int(np.round(x_perp)), 0)
p2 = (int(np.round(x_perp)), frame.shape[0])
cv2.line(frame, p1, p2, color, 2)
if draw_groundline and m != 0:
m_perp = -1/m
b_perp = y_perp - m_perp * x_perp
points = _find_points(-1/m, b_perp, frame.shape)
above_line = m * points[0][0] + b < points[0][1]
if (sky_is_up and above_line) or (not sky_is_up and not above_line):
p2 = points[0]
else:
p2 = points[1]
p1x = int(np.round(x_perp))
p1y = int(np.round(y_perp))
p1 = (p1x, p1y)
cv2.line(frame, p1, p2, (0,191,255), 1)
def draw_surfaces(frame, left: float, right: float, top: float, bottom: float,
ail_val: float, elev_val: float, surface_color: tuple):
# constants
plane_color = (50, 50, 50)
plane_thickness = 3
# convert to pixel values, relative to frame size
left = int(np.round(frame.shape[1] * left))
right = int(np.round(frame.shape[1] * right))
top = int(np.round(frame.shape[0] * top))
bottom = int(np.round(frame.shape[0] * bottom))
plane_width = right - left
plane_height = bottom - top
hor_stab_height = int(np.round(.6 * plane_height))
hor_stab_width = int(np.round(.4 * plane_width))
full_defection = int(np.round(.2 * plane_height))
ail_width = plane_width//3
ail_offset = plane_width//20
elev_offset = ail_offset
# draw wing
pt1 = (left, bottom)
pt2 = (right, bottom)
cv2.line(frame, pt1, pt2, plane_color, plane_thickness)
# draw vertical stabilizer
pt1 = (left + plane_width//2, top)
pt2 = (left + plane_width//2, bottom)
cv2.line(frame, pt1, pt2, plane_color, plane_thickness)
# draw horizontal stabilizer
pt1x = left + plane_width//2 - hor_stab_width//2
pt1y = top + plane_height - hor_stab_height
pt1 = (pt1x , pt1y)
pt2x = right - plane_width//2 + hor_stab_width//2
pt2y = pt1y
pt2 = (pt2x, pt2y)
cv2.line(frame, pt1, pt2, plane_color, plane_thickness)
# If there are no surface values to draw, return early
if None in (ail_val, elev_val):
return
# draw elevator
elev_deflection = int(np.round(elev_val * full_defection))
pt1x = left + plane_width//2 - hor_stab_width//2 + elev_offset
pt1y = top + plane_height - hor_stab_height - elev_deflection
pt1 = (pt1x , pt1y)
pt2x = right - plane_width//2 + hor_stab_width//2 - elev_offset
pt2y = top + plane_height - hor_stab_height
pt2 = (pt2x, pt2y)
cv2.rectangle(frame, pt1, pt2, surface_color, -1)
# draw ailerons
# left
ail_deflection = int(np.round(ail_val * full_defection))
pt1 = (left + ail_offset, bottom)
pt2 = (left + ail_offset + ail_width, bottom - ail_deflection)
cv2.rectangle(frame, pt1, pt2, surface_color, -1)
# right
pt1 = (right - ail_offset, bottom)
pt2 = (right - ail_offset - ail_width, bottom + ail_deflection)
cv2.rectangle(frame, pt1, pt2, surface_color, -1)
def draw_stick(frame, left: float, top: float, width: float,
val1: float, val2: float, trim1: float, trim2: float, color: tuple):
# general variables
height = width
width_pixels = width * frame.shape[1]
height_pixels = width_pixels
left_pixels = left * frame.shape[1]
right_pixels = (left + width) * frame.shape[1]
top_pixels = top * frame.shape[0]
# draw outer circle
outer_circle_color = (80,80,80)
radius_pixels = (right_pixels - left_pixels)/2
center_x = left_pixels + radius_pixels
center_y = top_pixels + radius_pixels
center_rounded = (round(center_x), round(center_y))
cv2.circle(frame, center_rounded, round(radius_pixels), outer_circle_color, -1)
# draw crosslines
crossline_color = (245,245,245)
crossline_width = 1
# line 1
hor_offset_from_center = width_pixels * .4
pt1x = center_x - hor_offset_from_center
pt1y = center_y
pt2x = center_x + hor_offset_from_center
pt2y = center_y
pt1 = (round(pt1x), round(pt1y))
pt2 = (round(pt2x), round(pt2y))
cv2.line(frame, pt1, pt2, crossline_color, crossline_width)
# line 2
vert_offset_from_center = height_pixels * .4
pt1x = center_x
pt1y = center_y - vert_offset_from_center
pt2x = center_x
pt2y = center_y + vert_offset_from_center
pt1 = (round(pt1x), round(pt1y))
pt2 = (round(pt2x), round(pt2y))
cv2.line(frame, pt1, pt2, crossline_color, crossline_width)
# draw inner rectangle
hor_offset_from_center = height_pixels * .3
vert_offset_from_center = height_pixels * .21
rectangle_color = (40,40,40)
pt1x = center_x - hor_offset_from_center
pt1y = center_y - vert_offset_from_center
pt2x = center_x + hor_offset_from_center
pt2y = center_y + vert_offset_from_center
rectangle_width = pt2x - pt1x
pt1 = (round(pt1x), round(pt1y))
pt2 = (round(pt2x), round(pt2y))
cv2.rectangle(frame, pt1, pt2, rectangle_color, -1)
# Restrict stick values within acceptable bounds (-1, 1)
val1 = _restrict(val1)
val2 = _restrict(val2)
trim1 = _restrict(trim1)
trim2 = _restrict(trim2)
# Draw stick
stick_color = (230,230,230)
stick_width = height_pixels * .12
pt1x = center_x
pt1y = center_y
pt2x = center_x + val1 * rectangle_width/2
pt2y = center_y + val2 * rectangle_width/2
pt1 = (round(pt1x), round(pt1y)) # base of stick
pt2 = (round(pt2x), round(pt2y)) # tip of stick
cv2.line(frame, pt1, pt2, stick_color, round(stick_width))
# Draw tip of stick
cv2.circle(frame, pt2, round(stick_width/2), outer_circle_color, -1)
cv2.circle(frame, pt2, round(stick_width/2), color, 2)