-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCarpetCubical3.agda
225 lines (194 loc) · 8.85 KB
/
CarpetCubical3.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
{-# OPTIONS --cubical #-}
open import CubicalBasics.PointedTypesCubical
-- open import Relation.Binary.Bundles
open import Agda.Builtin.Sigma
-- open import Data.Product
open import CubicalBasics.PropositionReasoning
--open import Level
--open import Relation.Binary.PropositionalEquality hiding (trans)
-- open import Relation.Binary.Core
-- open import Function.Base using (_∘_)
-- open import Relation.Binary.Definitions
--open import Relation.Binary.Structures using (IsPartialOrder)
-- open import Equalizer
open import SemiLattices
open import CubicalBasics.cubical-prelude hiding (_∨_ ; _∧_)
open import CubicalBasics.cubicalEqualityReasoning
open import HomoAlgStd
open import CubicalBasics.PropositionReasoning
--import Relation.Binary.Reasoning.Preorder
open import CubicalBasics.IsomorphismCubical
module CarpetCubical3 where
private variable
o e : Level
record CarpetOn {o l e : Level} (J : SemiLattice o l e) (𝕏 : SemiLattice.Carrier J → Ptd {lzero} ) : Type (o ⊔ l ⊔ e) where
open SemiLattice J
field
ϕ : {i j : Carrier } → i ≤ j → 𝕏 i ⊙→ 𝕏 j
reflex : {i : Carrier } → ϕ (reflexivity) ~ ⊙id (𝕏 i)
transit : {i j k : Carrier } → (p : (_≤_ i j)) → (q : (_≤_ j k)) → (r : (_≤_ i k)) → ϕ q ⊙∘ ϕ p ~ ϕ r
record CarpetOnJ {o l e : Level} (J : SemiLattice o l e) : Type (lsuc o ⊔ l ⊔ e) where
open SemiLattice J
field
𝕏 : Carrier → Ptd
mycarp : CarpetOn J 𝕏
record Carpet {o l e : Level} : Set (suc l ⊔ suc e ⊔ suc o) where
field
-- record {Carrier = I ; _≈_ = _≈_ ; _≤_ = _≤_ ; isPartialOrder = isPartialOrder } : Poset o l e
J : SemiLattice o l e
open SemiLattice J
field
X : Carrier → Set
XisSet : (i : Carrier) → isSet (X i)
pts : (i : Carrier) → X i
field
myCarp : CarpetOn J (λ i → ptd (X i , XisSet i) (pts i) )
open CarpetOn myCarp public
CarpetOnJToCarpet : {J : SemiLattice o ℓ e} → CarpetOnJ J → Carpet {o} {ℓ} {e}
CarpetOnJToCarpet {J = J} myca = record { J = J ; X = λ j → U⊙ (𝕏 j) ; XisSet = λ j → UisSet (𝕏 j) ; pts = λ j → pt (𝕏 j) ; myCarp = mycarp } where open CarpetOnJ myca
module CarpetHelper (C : Carpet {o} {ℓ} {e}) where
open Carpet C public
open Funs J public
open SemiLattice J public
𝕏 : Carrier → Ptd
𝕏 i = ptd (X i , XisSet i) (pts i)
private variable
i j k l : Carrier
transit' : {i j k : Carrier} → (p : i ≤ j) → (q : j ≤ k) → ϕ q ⊙∘ ϕ p ~ ϕ (p ■ q)
transit' p q = transit p q (p ■ q)
Elts : Set o
Elts = Σ (Carrier) X
EltsIsSet : isSet (Elts)
EltsIsSet = eltsIsSet (Carrier , CarIsSet) (λ k → X k , XisSet k)
doesntMatter : {p q : i ≤ j} → ϕ p ~ ϕ q
doesntMatter {p = p} {q = q} x = sym (reflex _) ∙ transit p reflexivity q x
toEl≡ : {x y : X j} → x ≡ y → _≡_ {A = Elts} (j , x) (j , y)
toEl≡ {j = j} p i = (j , p i)
isEmb : {x y : X j} → _≡_ {A = Elts} (j , x) (j , y) → x ≡ y
isEmb {j = j} {x = x} {y = y} p = sym ( substRefl X x ) ∙ first where -- hcomp (λ k → λ { (i = i0) → {!!} ; (i = i1) → {!!} }) {!proj₂ (p i)!}
H : cong proj₁ p ≡ refl
H = CarIsSet j j (cong proj₁ p) refl
first : subst X refl x ≡ y
first = subst (λ j=j → subst X j=j x ≡ y ) H (fromPathP λ i → proj₂ (p i))
data _≲_ (ix : Elts) (j : Carrier) : Set e where
€ : proj₁ ix ≤ j → ix ≲ j
_<_ : (ix : Elts) → (j : Carrier) → Set e
ix < j = proj₁ ix ≤ j
ElUnder : Carrier → Set (o ⊔ e)
ElUnder j = Σ[ e ∈ Elts ] (proj₁ e ≤ j)
elem : ElUnder j → Elts
elem = proj₁
inScope : (x : ElUnder j) → proj₁ (elem x) ≤ j
inScope = proj₂
{-- record ElUnder (j : Carrier) : Set (o ⊔ e) where
constructor _,_
field
elem : Elts
inScope : proj₁ elem ≤ j
open ElUnder public
--}
≡ElUnder : {j : Carrier} → (x y : ElUnder j ) → elem x ≡ elem y → x ≡ y
≡ElUnder x y p i = (p i) ,
isProp→PathP {A = λ k → (proj₁ (p k)) ≤ _} (λ k → ≤isProp) (inScope x) (inScope y) i
infixl 5 _§_
_§_ : ∀ {j} e → e < j → Elts
_§_ {j} (i , x) p = j , ⟦ ϕ p ⟧ x
_§§_ : ∀ {j} e → e ≲ j → Elts
_§§_ {j} (i , x) (€ p) = j , ⟦ ϕ p ⟧ x
push : ElUnder l → Elts
push x = (elem x § inScope x)
§refl=id : ∀ {e} → e § reflexivity ≡ e
§refl=id {e} = λ i → (proj₁ e) , (reflex (proj₂ e) i)
------------
--PROPERTIES
----------------
actrans : ∀ {j k e} → (p : e < j) → (q : j ≤ k) → (e § p) § q ≡ (e § (p ■ q))
actrans {e = e} p q i = _ , transit' p q (snd e) i
_∣ : ∀ {j} {e e'} {p : e < j} {p' : e' < j} → (pf : e ≡ e') → e § p ≡ e' § p'
_∣ {e = e} {e' = e'} {p} {p'} pf = cong push (≡ElUnder (e , p) (e' , p') pf)
commSq : ∀ {j j' k} e →
(p : e < j) →
(q : j ≤ k) → (p' : e < j') → (q' : j' ≤ k) → e § p § q ≡ e § p' § q'
commSq {k = k} e p q p' q' =
e § p § q
≡⟨ actrans p q ⟩
e § (p ■ q)
≡⟨ refl ∣ ⟩
e § (p' ■ q')
≡˘⟨ actrans p' q' ⟩
e § p' § q' ∎ where open Reasoning
-- Equality After Applying a function
record _≡[_]_ (x : Elts) (k : Carrier) ( y : Elts) : Set (o ⊔ e) where
field
left : fst x ≤ k
right : proj₁ y ≤ k
eq : x § left ≡ y § right
open _≡[_]_ public
infix 4 _≡[_]_
eq' : {x y : Elts} {k : Carrier} {l' : fst x ≤ k} {r' : fst y ≤ k} → x ≡[ k ] y → x § l' ≡ y § r'
eq' {x = x} {y = y} p = x § _ ≡⟨ refl ∣ ⟩ x § (left p) ≡⟨ eq p ⟩ y § right p ≡⟨ refl ∣ ⟩ y § _ ∎ where open Reasoning
≡[_]IsProp : (x y : Elts) (k : Carrier) → isProp (x ≡[ k ] y)
≡[_]IsProp x y k = λ p q i → record {
left = ≤isProp (left p) (left q) i ;
right = ≤isProp (right p) (right q) i ;
eq = isProp→PathP {A = λ x₁ → x § ≤isProp (left p) (left q) x₁ ≡ y § ≤isProp (right p) (right q) x₁ }
(λ i₁ → EltsIsSet (x § ≤isProp (left p) (left q) i₁) (y § ≤isProp (right p) (right q) i₁)) (eq p) (eq q) i }
----
---ACTIONS
--
fwd : {j' k : Carrier} →
{x : Elts} →
{y : ElUnder j'} →
x ≡[ k ] (elem y) →
x ≡[ k ∨ j' ] (push y) --(p $ ix)
fwd {j'} {k} {ix} {(jy , p)} z = record {
left = (left z) ■ (uB ) ;
right = (uB ) ■ (PathTo≤ comm) ;
eq = ix § (left z ■ uB )
≡˘⟨ actrans (left z) (uB) ⟩
ix § left z § (uB)
≡⟨ eq z ∣ ⟩
jy § right z § uB
≡⟨ (commSq jy (right z) (uB ) p (uB' )) ⟩
jy § p § uB ■ PathTo≤ comm ∎
} where open Reasoning
refl≡' : {x y : X j} → x ≡ y → (j , x) ≡[ j ] (j , y)
refl≡' p = record { left = reflexivity ; right = reflexivity ; eq = §refl=id ∙ toEl≡ p ∙ sym §refl=id }
refl≡ : {x : Elts} → x ≡[ proj₁ x ] x
refl≡ {x = x} = refl≡' refl
symm : {l : Carrier} → {x y : Elts} → x ≡[ l ] y → y ≡[ l ] x
symm p = record { left = right p ; right = left p ; eq = λ i → (eq p) (~ i) }
deeper : {l k : Carrier} {x y : Elts} → l ≤ k → x ≡[ l ] y → x ≡[ k ] y
deeper p r = record { left = left r ■ p ; right = right r ■ p ; eq =
_ § (left r ■ p)
≡˘⟨ actrans (left r) p ⟩
_ § left r § p
≡⟨ eq r ∣ ⟩
_ § right r § p
≡⟨ actrans (right r) p ⟩
_ § (right r ■ p)
∎
} where open Reasoning
syntax deeper p r = p ⅋ r
trans≡ : {l k : Carrier} → {x y z : Elts} → x ≡[ k ] y → y ≡[ l ] z → x ≡[ k ∨ l ] z
trans≡ {x = x} {y = y} {z = z} p q = record {
left = left p ■ uB ;
right = right q ■ uB' ;
eq =
x § (left p ■ uB)
≡˘⟨ actrans (left p) (uB) ⟩
x § left p § uB
≡⟨ eq p ∣ ⟩
y § right p § uB
≡⟨ commSq y (right p) (uB) (left q) (uB' ) ⟩ --{l = (proj₁ (y § left q))}
y § left q § uB'
≡⟨ eq q ∣ ⟩
z § right q § uB'
≡⟨ actrans (right q) (uB' ) ⟩
z § (right q ■ uB') ∎ } where open Reasoning
bwdHelper : {y : Elts} {x : ElUnder (proj₁ y)} → push x ≡ y → (elem x) ≡[ proj₁ y ] y
bwdHelper {x = (x , rr)} p = (record { left = rr ; right = reflexivity ; eq = (x § rr) ≡⟨ p ⟩ _ ≡˘⟨ §refl=id ⟩ _ § reflexivity ∎ }) where open Reasoning
bwd : {l : Carrier} → {y z : Elts} → {x : ElUnder (proj₁ y)} → push x ≡ y → z ≡[ l ] y → elem x ≡[ l ] z
bwd {l = l} {x = (x , rr)} p q = deeper (sup (right q) reflexivity) (trans≡ (bwdHelper p) (symm q))
fwdEasy : {x : X i} → (p : i ≤ j) → (i , x) ≡[ j ] ((i , x) § p)
fwdEasy p = deeper (sup p reflexivity) (fwd refl≡ )