Skip to content

Latest commit

 

History

History
202 lines (163 loc) · 5.14 KB

README.md

File metadata and controls

202 lines (163 loc) · 5.14 KB

orbital orbital website

R-CMD-check CRAN status Codecov test coverage Lifecycle: experimental

The goal of orbital is to enable running predictions of tidymodels workflows inside databases.

Installation

To install it, use:

install.packages("orbital")

You can install the development version of orbital from GitHub with:

# install.packages("devtools")
devtools::install_github("tidymodels/orbital")

Example

Given a fitted workflow

library(tidymodels)

rec_spec <- recipe(mpg ~ ., data = mtcars) |>
  step_normalize(all_numeric_predictors())

lm_spec <- linear_reg()

wf_spec <- workflow(rec_spec, lm_spec)

wf_fit <- fit(wf_spec, mtcars)

You can predict with it like normal.

predict(wf_fit, mtcars)
#> # A tibble: 32 × 1
#>    .pred
#>    <dbl>
#>  1  22.6
#>  2  22.1
#>  3  26.3
#>  4  21.2
#>  5  17.7
#>  6  20.4
#>  7  14.4
#>  8  22.5
#>  9  24.4
#> 10  18.7
#> # ℹ 22 more rows

We can get the same results by first creating an orbital object

library(orbital)
orbital_obj <- orbital(wf_fit)
orbital_obj
#> 
#> ── orbital Object ──────────────────────────────────────────────────────────────
#> • cyl = (cyl - 6.1875) / 1.785922
#> • disp = (disp - 230.7219) / 123.9387
#> • hp = (hp - 146.6875) / 68.56287
#> • drat = (drat - 3.596562) / 0.5346787
#> • wt = (wt - 3.21725) / 0.9784574
#> • qsec = (qsec - 17.84875) / 1.786943
#> • vs = (vs - 0.4375) / 0.5040161
#> • am = (am - 0.40625) / 0.4989909
#> • gear = (gear - 3.6875) / 0.7378041
#> • carb = (carb - 2.8125) / 1.6152
#> • .pred = 20.09062 + (cyl * -0.199024) + (disp * 1.652752) + (hp * -1.472 ...
#> ────────────────────────────────────────────────────────────────────────────────
#> 11 equations in total.

and then “predicting” with it using predict() to get the same results

predict(orbital_obj, as_tibble(mtcars))
#> # A tibble: 32 × 1
#>    .pred
#>    <dbl>
#>  1  22.6
#>  2  22.1
#>  3  26.3
#>  4  21.2
#>  5  17.7
#>  6  20.4
#>  7  14.4
#>  8  22.5
#>  9  24.4
#> 10  18.7
#> # ℹ 22 more rows

you can also predict in most SQL databases

library(DBI)
library(RSQLite)

con <- dbConnect(SQLite(), path = ":memory:")
db_mtcars <- copy_to(con, mtcars)

predict(orbital_obj, db_mtcars)
#> # Source:   SQL [?? x 1]
#> # Database: sqlite 3.47.0 []
#>    .pred
#>    <dbl>
#>  1  22.6
#>  2  22.1
#>  3  26.3
#>  4  21.2
#>  5  17.7
#>  6  20.4
#>  7  14.4
#>  8  22.5
#>  9  24.4
#> 10  18.7
#> # ℹ more rows

and spark databases

library(sparklyr)
#> 
#> Attaching package: 'sparklyr'
#> The following object is masked from 'package:purrr':
#> 
#>     invoke
#> The following object is masked from 'package:stats':
#> 
#>     filter
sc <- spark_connect(master = "local")

sc_mtcars <- copy_to(sc, mtcars, overwrite = TRUE)

predict(orbital_obj, sc_mtcars)
#> # Source:   SQL [?? x 1]
#> # Database: spark_connection
#>    .pred
#>    <dbl>
#>  1  22.6
#>  2  22.1
#>  3  26.3
#>  4  21.2
#>  5  17.7
#>  6  20.4
#>  7  14.4
#>  8  22.5
#>  9  24.4
#> 10  18.7
#> # ℹ more rows

Supported models and recipes steps

Full list of supported models and recipes steps can be found here: vignette("supported-models").

contributing

This project is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.