diff --git a/src/LocalField/Conjugates.jl b/src/LocalField/Conjugates.jl index 6b231d1a79..890d6a0700 100644 --- a/src/LocalField/Conjugates.jl +++ b/src/LocalField/Conjugates.jl @@ -113,7 +113,7 @@ function roots(C::qAdicRootCtx, n::Int = 10) end @doc raw""" - qAdicConj(K::AbsSimpleNumField, p::Int) + qAdicConj(K::AbsSimpleNumField, p::Int; cached::Bool = true) Creates a data structure to compute the conjugates in an unramified splitting field over $Q_p$. @@ -123,7 +123,7 @@ mutable struct qAdicConj C::qAdicRootCtx cache::Dict{AbsSimpleNumFieldElem, Any} - function qAdicConj(K::AbsSimpleNumField, p::Int; splitting_field::Bool = false) + function qAdicConj(K::AbsSimpleNumField, p::Int; splitting_field::Bool = false, cached::Bool = true) if discriminant(map_coefficients(Native.GF(p), K.pol)) == 0 error("cannot deal with difficult primes yet") end @@ -143,7 +143,8 @@ mutable struct qAdicConj D = get_attribute!(K, :nf_conjugate_data_qAdic) do return Dict{Int, Tuple{qAdicRootCtx, Dict{AbsSimpleNumFieldElem, Any}}}() end::Dict{Int, Tuple{qAdicRootCtx, Dict{AbsSimpleNumFieldElem, Any}}} - Dp = get!(D, p) do + + Dp = get_cached!(D, p, cached) do Zx = polynomial_ring(ZZ, cached = false)[1] d = lcm(map(denominator, coefficients(K.pol))) C = qAdicRootCtx(Zx(K.pol*d), p) @@ -499,7 +500,7 @@ function lift_root(f::ZZPolyRingElem, a::AbsSimpleNumFieldElem, o::AbsSimpleNumF end @doc raw""" - completion_easy(K::AbsSimpleNumField, P::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) + completion_easy(K::AbsSimpleNumField, P::AbsNumFieldOrderIdeal; cached::Bool = true) -> QadicField, CompletionMap The completion of $K$ wrt to the topology induced by the valuation at the @@ -509,17 +510,17 @@ The map giving the embedding of $K$ into the completion, admits a pointwise preimage to obtain a lift. Note, that the map is not well defined by this data: $K$ will have $\deg P$ many embeddings. """ -function completion_easy(K::AbsSimpleNumField, P::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, precision::Int = 10) +function completion_easy(K::AbsSimpleNumField, P::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, precision::Int = 10; cached::Bool = true) #non-unique!! will have deg(P) many p = minimum(P) - C = qAdicConj(K, Int(p)) + C = qAdicConj(K, Int(p); cached) g = conjugates(P.gen_two.elem_in_nf, C) # @show map(x->valuation(x), g) i = findfirst(x->valuation(x) > 0, g) - return completion(K, p, i, precision) + return completion(K, p, i, precision; cached) end -completion(K::AbsSimpleNumField, p::Integer, i::Int, precision::Int = 64) = completion(K, ZZRingElem(p), i, precision) +completion(K::AbsSimpleNumField, p::Integer, i::Int, precision::Int = 64; cached::Bool = true) = completion(K, ZZRingElem(p), i, precision; cached) @doc raw""" completion(K::AbsSimpleNumField, p::ZZRingElem, i::Int) -> QadicField, Map @@ -527,17 +528,17 @@ completion(K::AbsSimpleNumField, p::Integer, i::Int, precision::Int = 64) = comp The completion corresponding to the $i$-th conjugate in the non-canonical ordering of `conjugates`. """ -function completion(K::AbsSimpleNumField, p::ZZRingElem, i::Int, n = 64) - C = qAdicConj(K, Int(p)) +function completion(K::AbsSimpleNumField, p::ZZRingElem, i::Int, n = 64; cached::Bool = true) + C = qAdicConj(K, Int(p); cached) @assert 0parent(r[x]) == parent(ca) && r[x] == ca, 1:length(r)) Zx = polynomial_ring(ZZ, cached = false)[1] diff --git a/test/LocalField/Conjugates.jl b/test/LocalField/Conjugates.jl index 7ed3d90395..b0f8e38bbf 100644 --- a/test/LocalField/Conjugates.jl +++ b/test/LocalField/Conjugates.jl @@ -26,6 +26,8 @@ @test valuation(a - preimage(mL1, mL1(a)), lp[2][1]) >= 10 @test valuation(a - preimage(mL2, mL2(a)), lp[1][1]) >= 10 + + @test degree(codomain(completion(k, 37, 2; cached = false)[2])) == 2 end end