-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathdglmol.py
116 lines (95 loc) · 4.17 KB
/
dglmol.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
from dgl import DGLGraph
import rdkit.Chem as Chem
from chemutils import get_clique_mol, tree_decomp, get_mol, get_smiles, \
set_atommap, enum_assemble_nx, decode_stereo
import numpy as np
class DGLMol(DGLGraph):
def __init__(self, smiles):
DGLGraph.__init__(self)
self.nodes_dict = {}
if smiles is None:
return
self.smiles = smiles
self.mol = get_mol(smiles)
mol = Chem.MolFromSmiles(smiles)
self.smiles3D = Chem.MolToSmiles(mol, isomericSmiles=True)
self.smiles2D = Chem.MolToSmiles(mol)
self.stereo_cands = decode_stereo(self.smiles2D)
cliques, edges = tree_decomp(self.mol)
root = 0
for i, c in enumerate(cliques):
cmol = get_clique_mol(self.mol, c)
csmiles = get_smiles(cmol)
self.nodes_dict[i] = dict(
smiles=csmiles,
mol=get_mol(csmiles),
clique=c,
)
if min(c) == 0:
root = i
self.add_nodes(len(cliques))
if root > 0:
for attr in self.nodes_dict[0]:
self.nodes_dict[0][attr], self.nodes_dict[root][attr] = \
self.nodes_dict[root][attr], self.nodes_dict[0][attr]
src = np.zeros((len(edges) * 2,), dtype='int')
dst = np.zeros((len(edges) * 2,), dtype='int')
for i, (_x, _y) in enumerate(edges):
x = 0 if _x == root else root if _x == 0 else _x
y = 0 if _y == root else root if _y == 0 else _y
src[2 * i] = x
dst[2 * i] = y
src[2 * i + 1] = y
dst[2 * i + 1] = x
self.add_edges(src, dst)
for i in self.nodes_dict:
self.nodes_dict[i]['nid'] = i + 1
if self.out_degree(i) > 1:
set_atommap(self.nodes_dict[i]['mol'], self.nodes_dict[i]['nid'])
self.nodes_dict[i]['is_leaf'] = (self.out_degree(i) == 1)
def treesize(self):
return self.number_of_nodes()
def _recover_node(self, i, original_mol):
node = self.nodes_dict[i]
clique = []
clique.extend(node['clique'])
if not node['is_leaf']:
for cidx in node['clique']:
original_mol.GetAtomWithIdx(cidx).SetAtomMapNum(node['nid'])
for j in self.successors(i).numpy():
nei_node = self.nodes_dict[j]
clique.extend(nei_node['clique'])
if nei_node['is_leaf']:
continue
for cidx in nei_node['clique']:
if cidx not in node['clique'] or len(nei_node['clique']) == 1:
atom = original_mol.GetAtomWithIdx(cidx)
atom.SetAtomMapNum(nei_node['nid'])
clique = list(set(clique))
label_mol = get_clique_mol(original_mol, clique)
node['label'] = Chem.MolToSmiles(Chem.MolFromSmiles(get_smiles(label_mol)))
node['label_mol'] = get_mol(node['label'])
for cidx in clique:
original_mol.GetAtomWithIdx(cidx).SetAtomMapNum(0)
return node['label']
def _assemble_node(self, i):
neighbors = [self.nodes_dict[j] for j in self.successors(i).numpy()
if self.nodes_dict[j]['mol'].GetNumAtoms() > 1]
neighbors = sorted(neighbors, key=lambda x: x['mol'].GetNumAtoms(), reverse=True)
singletons = [self.nodes_dict[j] for j in self.successors(i).numpy()
if self.nodes_dict[j]['mol'].GetNumAtoms() == 1]
neighbors = singletons + neighbors
cands = enum_assemble_nx(self.nodes_dict[i], neighbors)
if len(cands) > 0:
self.nodes_dict[i]['cands'], self.nodes_dict[i]['cand_mols'], _ = list(zip(*cands))
self.nodes_dict[i]['cands'] = list(self.nodes_dict[i]['cands'])
self.nodes_dict[i]['cand_mols'] = list(self.nodes_dict[i]['cand_mols'])
else:
self.nodes_dict[i]['cands'] = []
self.nodes_dict[i]['cand_mols'] = []
def recover(self):
for i in self.nodes_dict:
self._recover_node(i, self.mol)
def assemble(self):
for i in self.nodes_dict:
self._assemble_node(i)