-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPC_SAFT_GEKKO.py
244 lines (197 loc) · 8.95 KB
/
PC_SAFT_GEKKO.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import numpy as np
from gekko import GEKKO
def PC_SAFT_bubble_T(x, yg, T, Pg, m_seg, σ, ϵ_k, k_ij, κ_AB=None, ϵ_AB_k=None):
def get_i_name(name_i):
names = [m._intermediates[i].name for i in range(len(m._intermediates))]
if name_i in names:
count = sum([name_i in name for name in names])
name_i += ' - ' + str(count)
return name_i
def f_m_bar(m, z):
return m.Intermediate(sum([z[i] * m_seg[i] for i in range(k)]))
def f_v(m, z, eta, T):
ρ = f_ρ(m, z, eta, T)
return N_A * 10 ** -30 / ρ
def f_d(m, T):
return [m.Intermediate(σ[i] * (1 - .12 * exp(-3 * ϵ_k[i] / T))) for i in
range(k)]
def f_ρ(m, z, eta, T):
d = f_d(m, T)
return m.Intermediate(6 / π * eta * sum([(z[i] * m_seg[i] * d[i] ** 3) for i in range(k)]) ** (-1))
def f_ξ(m, z, T, ρ):
d = f_d(m, T)
return [m.Intermediate(π / 6 * ρ * sum([z[i] * m_seg[i] * d[i] ** n for i in range(k)])) for n in range(4)]
def f_g_hs_ij(m, z, T, ρ):
d = f_d(m, T)
ξ = f_ξ(m, z, T, ρ)
return [[m.Intermediate((1 / (1 - ξ[3])) +
((d[i] * d[j] / (d[i] + d[j])) * 3 * ξ[2] / (1 - ξ[3]) ** 2) +
((d[i] * d[j] / (d[i] + d[j])) ** 2 * 2 * ξ[2] ** 2 / (1 - ξ[3]) ** 3))
for j in range(k)]
for i in range(k)]
def f_d_ij(m, d):
return [[m.Intermediate(1 / 2 * (d[i] + d[j])) for j in range(k)] for i in
range(k)]
# Δ_AB_ij = m.Intermediate(
# [[d_ij[i][j] ** 3 * g_hs_ij[i][j] * m.κ_AB_ij[i][j] * (exp(m.ϵ_AB_ij[i][j] / T) - 1)
# for j in range(k)] for i in range(k)])
def f_a_hs(m, z, T, ρ):
ξ = f_ξ(m, z, T, ρ)
return m.Intermediate(1 / ξ[0] * (3 * ξ[1] * ξ[2] / (1 - ξ[3]) + ξ[2] ** 3 / (ξ[3] * (1 - ξ[3]) ** 2) + (
ξ[2] ** 3 / ξ[3] ** 2 - ξ[0]) * log(1 - ξ[3])))
def f_a_hc(m, z, T, ρ):
m_bar = f_m_bar(m, z)
g_hs_ij = f_g_hs_ij(m, z, T, ρ)
a_hs = f_a_hs(m, z, T, ρ)
return m.Intermediate(m_bar * a_hs - sum([z[i] * (m_seg[i] - 1) * log(g_hs_ij[i][i]) for i in range(k)]))
def f_a_disp(m, z, T, ρ):
m_bar = f_m_bar(m, z)
eta = f_ξ(m, z, T, ρ)[-1]
a = [
a_ni[0, i] + (m_bar - 1) / m_bar * a_ni[1, i] + (m_bar - 1) / m_bar * (m_bar - 2) / m_bar * a_ni[2, i]
for i in range(7)]
b = [
b_ni[0, i] + (m_bar - 1) / m_bar * b_ni[1, i] + (m_bar - 1) / m_bar * (m_bar - 2) / m_bar * b_ni[2, i]
for i in range(7)]
I1 = sum([a[i] * eta ** i for i in range(7)])
I2 = sum([b[i] * eta ** i for i in range(7)])
Σ_1 = sum([sum([z[i] * z[j] * m_seg[i] * m_seg[j] * (ϵ_ij[i][j] / T) * σ_ij[i][j] ** 3
for j in range(k)])
for i in range(k)])
Σ_2 = sum([sum([z[i] * z[j] * m_seg[i] * m_seg[j] * (ϵ_ij[i][j] / T) ** 2 * σ_ij[i][j] ** 3
for j in range(k)])
for i in range(k)])
C1 = (1 + m_bar * (8 * eta - 2 * eta ** 2) / (1 - eta) ** 4 +
(1 - m_bar) * (20 * eta - 27 * eta ** 2 + 12 * eta ** 3 - 2 * eta ** 4) / (
(1 - eta) * (2 - eta)) ** 2) ** -1
return m.Intermediate(-2 * π * ρ * I1 * Σ_1 - π * ρ * m_bar * C1 * I2 * Σ_2)
def f_a_res(m, z, T, ρ):
a_hc = f_a_hc(m, z, T, ρ)
a_disp = f_a_disp(m, z, T, ρ)
return m.Intermediate(a_hc + a_disp)
def f_da_res_deta(m, z, eta, T):
δ = .00001
h = eta * δ
eta1 = eta - 2 * h
eta2 = eta - 1 * h
eta3 = eta + 1 * h
eta4 = eta + 2 * h
a_res_1 = f_a_res(m, z, T, f_ρ(m, z, eta1, T))
a_res_2 = f_a_res(m, z, T, f_ρ(m, z, eta2, T))
a_res_3 = f_a_res(m, z, T, f_ρ(m, z, eta3, T))
a_res_4 = f_a_res(m, z, T, f_ρ(m, z, eta4, T))
return m.Intermediate((a_res_1 - 8 * a_res_2 + 8 * a_res_3 - a_res_4) / (12 * h))
def f_da_res_dT(m, z, eta, T):
δ = .00001
h = T * δ
ρ = f_ρ(m, z, eta, T)
a_res_1 = f_a_res(m, z, T - 2 * h, ρ)
a_res_2 = f_a_res(m, z, T - 1 * h, ρ)
a_res_3 = f_a_res(m, z, T + 1 * h, ρ)
a_res_4 = f_a_res(m, z, T + 2 * h, ρ)
return m.Intermediate((a_res_1 - 8 * a_res_2 + 8 * a_res_3 - a_res_4) / (12 * h))
def f_da_res_dz(m, z, eta, T, j):
δ = .00001
h = z[j] * δ
diff = [-2 * h, -h, h, 2 * h]
z_new = m.Array(m.Param, (4, 3))
for n in range(4):
for i in range(len(z)):
if i == j:
z_new[n, i] = z[i] + diff[n]
else:
z_new[n, i] = z[i]
a_res_1 = f_a_res(m, z_new[0], T, f_ρ(m, z, eta, T))
a_res_2 = f_a_res(m, z_new[1], T, f_ρ(m, z, eta, T))
a_res_3 = f_a_res(m, z_new[2], T, f_ρ(m, z, eta, T))
a_res_4 = f_a_res(m, z_new[3], T, f_ρ(m, z, eta, T))
return m.Intermediate((a_res_1 - 8 * a_res_2 + 8 * a_res_3 - a_res_4) / (12 * h))
def f_Z(m, z, eta, T):
da_res_deta = f_da_res_deta(m, z, eta, T)
return m.Intermediate(1 + eta * da_res_deta)
def f_P(m, z, eta, T):
Z = f_Z(m, z, eta, T)
ρ = f_ρ(m, z, eta, T)
return m.Intermediate(Z * kb * T * ρ * 10 ** 30)
def f_h_res_RT(m, z, eta, T):
da_res_dT = f_da_res_dT(m, z, eta, T)
Z = f_Z(m, z, eta, T)
return m.Intermediate(-T * da_res_dT + (Z - 1))
def f_s_res_RT(m, z, eta, T):
ρ = f_ρ(m, z, eta, T)
da_res_dT = f_da_res_dT(m, z, eta, T)
a_res = f_a_res(m, z, T, ρ)
Z = f_Z(m, z, eta, T)
return m.Intermediate(-T * (da_res_dT + a_res / T) + log(Z))
def f_g_res_RT(m, z, eta, T):
ρ = f_ρ(m, z, eta, T)
a_res = f_a_res(m, z, T, ρ)
Z = f_Z(m, z, eta, T)
name = get_i_name('g_res_RT')
return m.Intermediate(a_res + (Z - 1) - log(Z))
def f_μ_res_kT(m, z, eta, T):
ρ = f_ρ(m, z, eta, T)
a_res = f_a_res(m, z, T, ρ)
Z = f_Z(m, z, eta, T)
da_res_z = [f_da_res_dz(m, z, eta, T, i) for i in range(len(z))]
Σ = sum([z[i] * da_res_z[i] for i in range(len(z))])
μ_res = [m.Intermediate((a_res + (Z - 1) + da_res_z[i] - Σ)) for i in
range(len(z))]
return μ_res
def f_φ(m, z, eta, T):
μ_res_kT = f_μ_res_kT(m, z, eta, T)
Z = f_Z(m, z, eta, T)
return [m.Intermediate(exp(μ_res_kT[i] - log(Z))) for i in range(3)]
a_ni = np.array([[0.9105631445, -0.3084016918, -0.0906148351],
[0.6361281449, 0.1860531159, 0.4527842806],
[2.6861347891, -2.5030047259, 0.5962700728],
[-26.547362491, 21.419793629, -1.7241829131],
[97.759208784, -65.255885330, -4.1302112531],
[-159.59154087, 83.318680481, 13.776631870],
[91.297774084, -33.746922930, -8.6728470368]]).T
b_ni = np.array([[0.7240946941, -0.5755498075, 0.0976883116],
[2.2382791861, 0.6995095521, -0.2557574982],
[-4.0025849485, 3.8925673390, -9.1558561530],
[-21.003576815, -17.215471648, 20.642075974],
[26.855641363, 192.67226447, -38.804430052],
[206.55133841, -161.82646165, 93.626774077],
[-355.60235612, -165.20769346, -29.666905585]]).T
k = len(x)
σ_ij = [[1 / 2 * (σ[i] + σ[j]) for j in range(k)] for i in range(k)]
ϵ_ij = [[(ϵ_k[i] * ϵ_k[j]) ** (1 / 2) * (1 - k_ij[i][j]) for j in range(k)] for i in range(k)]
# κ_AB_ij = [[(κ_AB[i] * κ_AB[j]) ** (1 / 2) * ((σ[i] * σ[j]) / (1 / 2 * (σ[i] * σ[j]))) ** 3 for j in range(k)]
# for i in range(k)]
# ϵ_AB_ij = [[(ϵ_AB_k[i] + ϵ_AB_k[j]) / 2 for j in range(k)] for i in range(k)]
# if κ_AB is None:
# κ_AB = np.zeros(k)
#
# if ϵ_AB_k is None:
# ϵ_AB_k = np.zeros(k)
kb = 1.380649e-23 # J/K
N_A = 6.0221e23 # 1/mol
π = np.pi
m = GEKKO(remote=False)
# Gekko Functions
exp = m.exp
log = m.log
sum = np.sum
etal = m.Var(value=.5)
etav = m.Var(value=10e-10)
# etal = .39490600
# etav = .00145987
y = [m.Var(value=yg[i], lb=0, ub=1, name=f'y_{i + 1}') for i in range(len(yg))]
P = m.Var(value=5e5, lb=0, ub=1e7, name=f'P')
φv = [m.Intermediate(f_φ(m, y, etav, T)[i]) for i in range(len(yg))]
φl = [m.Intermediate(f_φ(m, x, etal, T)[i]) for i in range(len(yg))]
m.Equation(f_P(m, y, etav, T)/1e6 == P/1e6)
m.Equation(f_P(m, x, etal, T)/1e6 == P/1e6)
m.Equation([y[i] * φv[i] == x[i] * φl[i] for i in range(3)])
m.Equation(1 == sum(y))
m.options.IMODE = 1
m.options.SOLVER = 3
# m.open_folder()
m.solve(disp=False)
y_CO2 = y[0].value[0]
P = P.value[0]
P_CO2 = P*y_CO2
return P_CO2