-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
143 lines (115 loc) · 4.31 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# -*- coding: utf-8 -*-
import cv2
import numpy as np
import matplotlib.pyplot as plt
import network
from tqdm import tqdm
import scipy.io as sio
np.random.seed(0)
def DoG(img, ksize=(5,5), sigma=1.3, k=1.6):
# DoG filter as a model of LGN
g1 = cv2.GaussianBlur(img, ksize, sigma)
g2 = cv2.GaussianBlur(img, ksize, k*sigma)
dog = g1 - g2
return dog
#return (dog - dog.min())/(dog.max()-dog.min())
def GaussianMask(sizex=16, sizey=16, sigma=4.8):
x = np.arange(0, sizex, 1, float)
y = np.arange(0, sizey, 1, float)
x, y = np.meshgrid(x,y)
x0 = sizex // 2
y0 = sizey // 2
mask = np.exp(-((x-x0)**2 + (y-y0)**2) / (2*(sigma**2)))
return mask / np.sum(mask)
# Preprocess of inputs
num_iter = 5000
imgdirpath = "./images_preprocessed/"
imglist = []
# datasets from http://www.rctn.org/bruno/sparsenet/
mat_images = sio.loadmat('datasets/IMAGES.mat')
imgs = mat_images['IMAGES']
mat_images_raw = sio.loadmat('datasets/IMAGES_RAW.mat')
imgs_raw = mat_images_raw['IMAGESr']
# Define model
model = network.RaoBallard1999Model()
# Simulation constants
H, W, num_images = imgs.shape
nt_max = 1000 # Maximum number of simulation time
eps = 1e-3 # small value which determines convergence
input_scale = 40 # scale factor of inputs
gmask = GaussianMask() # Gaussian mask
error_list = [] # List to save errors
for iter_ in tqdm(range(num_iter)):
# Get images randomly
idx = np.random.randint(0, num_images)
img = imgs[:, :, idx]
# Get the coordinates of the upper left corner of clopping image randomly.
beginx = np.random.randint(0, W-27)
beginy = np.random.randint(0, H-17)
img_clopped = img[beginy:beginy+16, beginx:beginx+26]
# Clop three inputs
inputs = np.array([(gmask*img_clopped[:, i*5:i*5+16]).flatten() for i in range(3)])
inputs = (inputs - np.mean(inputs)) * input_scale
# Reset states
model.initialize_states(inputs)
# Input an image patch until latent variables are converged
for i in range(nt_max):
# Update r and rh without update weights
error, errorh, dr, drh = model(inputs, training=False)
# Compute norm of r and rh
dr_norm = np.linalg.norm(dr, ord=2)
drh_norm = np.linalg.norm(drh, ord=2)
# Check convergence of r and rh, then update weights
if dr_norm < eps and drh_norm < eps:
error, errorh, dr, drh = model(inputs, training=True)
break
# If failure to convergence, break and print error
if i >= nt_max-2:
print("Error at patch:", iter_)
print(dr_norm, drh_norm)
break
error_list.append(model.calculate_total_error(error, errorh)) # Append errors
# Decay learning rate
if iter_ % 40 == 39:
model.k2 /= 1.015
# Print moving average error
if iter_ % 1000 == 999:
print("\n iter: "+str(iter_+1)+"/"+str(num_iter)+", Moving error:", np.mean(error_list[iter_-999:iter_]))
def moving_average(x, n=100) :
ret = np.cumsum(x, dtype=float)
ret[n:] = ret[n:] - ret[:-n]
return ret[n - 1:] / n
moving_average_error = moving_average(np.array(error_list))
plt.figure(figsize=(5, 3))
plt.ylabel("Error")
plt.xlabel("Iterations")
plt.plot(np.arange(len(moving_average_error)), moving_average_error)
plt.show()
# Plot Receptive fields of level 1
fig = plt.figure(figsize=(8, 4))
plt.subplots_adjust(hspace=0.1, wspace=0.1)
for i in range(32):
plt.subplot(4, 8, i+1)
plt.imshow(np.reshape(model.U[:, i], (16, 16)), cmap="gray")
plt.axis("off")
fig.suptitle("Receptive fields of level 1", fontsize=20)
plt.subplots_adjust(top=0.9)
plt.savefig("RF_level1.png")
plt.show()
# Plot Receptive fields of level 2
zeroPadding = np.zeros((80, 32))
U1 = np.concatenate((model.U, zeroPadding, zeroPadding))
U2 = np.concatenate((zeroPadding, model.U, zeroPadding))
U3 = np.concatenate((zeroPadding, zeroPadding, model.U))
U_ = np.concatenate((U1, U2, U3), axis = 1)
Uh_ = U_ @ model.Uh
fig = plt.figure(figsize=(8, 5))
plt.subplots_adjust(hspace=0.1, wspace=0.1)
for i in range(36):
plt.subplot(6, 6, i+1)
plt.imshow(np.reshape(Uh_[:, i], (16, 26), order='F'), cmap="gray")
plt.axis("off")
fig.suptitle("Receptive fields of level 2", fontsize=20)
plt.subplots_adjust(top=0.9)
plt.savefig("RF_level2.png")
plt.show()