-
Notifications
You must be signed in to change notification settings - Fork 86
/
Copy pathRPP.py
213 lines (180 loc) · 8.27 KB
/
RPP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
from __future__ import print_function, absolute_import
import argparse
import os.path as osp
import numpy as np
import sys
import torch
from torch import nn
from torch.backends import cudnn
from torch.utils.data import DataLoader
from reid import datasets
from reid import models
from reid.trainers_partloss import Trainer
from reid.evaluators import Evaluator
from reid.utils.data import transforms as T
#import torchvision.transforms as transforms
from reid.utils.data.preprocessor import Preprocessor
from reid.utils.logging import Logger
from reid.utils.serialization import load_checkpoint, save_checkpoint
def get_data(name, data_dir, height, width, batch_size, workers):
root = osp.join(data_dir, name)
root = data_dir
dataset = datasets.create(name, root)
normalizer = T.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
num_classes = dataset.num_train_ids
train_transformer = T.Compose([
T.RectScale(height, width),
T.RandomHorizontalFlip(),
T.ToTensor(),
normalizer,
])
test_transformer = T.Compose([
T.RectScale(height, width),
T.ToTensor(),
normalizer,
])
train_loader = DataLoader(
Preprocessor(dataset.train, root=osp.join(dataset.images_dir,dataset.train_path),
transform=train_transformer),
batch_size=batch_size, num_workers=workers,
shuffle=True, pin_memory=True, drop_last=True)
query_loader = DataLoader(
Preprocessor(dataset.query, root=osp.join(dataset.images_dir,dataset.query_path),
transform=test_transformer),
batch_size=batch_size, num_workers=workers,
shuffle=False, pin_memory=True)
gallery_loader = DataLoader(
Preprocessor(dataset.gallery, root=osp.join(dataset.images_dir,dataset.gallery_path),
transform=test_transformer),
batch_size=batch_size, num_workers=workers,
shuffle=False, pin_memory=True)
return dataset, num_classes, train_loader, query_loader, gallery_loader
def main(args):
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
cudnn.benchmark = True
# Redirect print to both console and log file
if not args.evaluate:
sys.stdout = Logger(osp.join(args.logs_dir, 'log.txt'))
# Create data loaders
if args.height is None or args.width is None:
args.height, args.width = (144, 56) if args.arch == 'inception' else \
(256, 128)
dataset, num_classes, train_loader, query_loader, gallery_loader = \
get_data(args.dataset, args.data_dir, args.height,
args.width, args.batch_size, args.workers,
)
# Create model
model = models.create(args.arch, num_features=args.features,
dropout=args.dropout, num_classes=num_classes,cut_at_pooling=False, FCN=True, T=args.T, dim=args.dim)
# Load from checkpoint
start_epoch = best_top1 = 0
if args.resume:
checkpoint = load_checkpoint(args.resume)
#======================added by syf, to remove undeployed layers=============
model_dict = model.state_dict()
checkpoint_load = {k: v for k, v in (checkpoint['state_dict']).items() if k in model_dict}
model_dict.update(checkpoint_load)
model.load_state_dict(model_dict)
# model.load_state_dict(checkpoint['state_dict'])
start_epoch = checkpoint['epoch']
best_top1 = checkpoint['best_top1']
print("=> Start epoch {} best top1 {:.1%}"
.format(start_epoch, best_top1))
model = nn.DataParallel(model).cuda()
# Evaluator
evaluator = Evaluator(model)
if args.evaluate:
print("Test:")
evaluator.evaluate(query_loader, gallery_loader, dataset.query, dataset.gallery)
return
# Criterion
criterion = nn.CrossEntropyLoss().cuda()
# Optimizer
if hasattr(model.module, 'base'):
base_param_ids = set(map(id, model.module.base.parameters()))
new_params = [p for p in model.parameters() if
id(p) not in base_param_ids]
param_groups = [
{'params': model.module.base.parameters(), 'lr_mult': args.lr_mult},
{'params': new_params, 'lr_mult': 1.0}]
else:
param_groups = model.parameters()
optimizer = torch.optim.SGD(param_groups, lr=args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay,
nesterov=True)
# Trainer
trainer = Trainer(model, criterion, 0, 0, SMLoss_mode=0)
# Schedule learning rate
def adjust_lr(epoch):
step_size = 60 if args.arch == 'inception' else args.step_size
lr = args.lr * (0.1 ** (epoch // step_size))
for g in optimizer.param_groups:
g['lr'] = lr * g.get('lr_mult', 1)
# Start training
for epoch in range(start_epoch, args.epochs):
adjust_lr(epoch)
trainer.train(epoch, train_loader, optimizer)
is_best = True
save_checkpoint({
'state_dict': model.module.state_dict(),
'epoch': epoch + 1,
'best_top1': best_top1,
}, is_best, fpath=osp.join(args.logs_dir, 'checkpoint.pth.tar'))
# Final test
print('Test with best model:')
checkpoint = load_checkpoint(osp.join(args.logs_dir, 'checkpoint.pth.tar'))
model.module.load_state_dict(checkpoint['state_dict'])
evaluator.evaluate(query_loader, gallery_loader, dataset.query, dataset.gallery)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Softmax loss classification")
# data
parser.add_argument('-d', '--dataset', type=str, default='cuhk03',
choices=datasets.names())
parser.add_argument('-b', '--batch-size', type=int, default=256)
parser.add_argument('-j', '--workers', type=int, default=4)
parser.add_argument('--split', type=int, default=0)
parser.add_argument('--height', type=int,
help="input height, default: 256 for resnet*, "
"144 for inception")
parser.add_argument('--width', type=int,
help="input width, default: 128 for resnet*, "
"56 for inception")
parser.add_argument('--combine-trainval', action='store_true',
help="train and val sets together for training, "
"val set alone for validation")
# model
parser.add_argument('-a', '--arch', type=str, default='resnet50',
choices=models.names())
parser.add_argument('--features', type=int, default=128)
parser.add_argument('--dropout', type=float, default=0.5)
# optimizer
parser.add_argument('--lr', type=float, default=0.1,
help="learning rate of new parameters, for pretrained "
"parameters it is 10 times smaller than this")
parser.add_argument('--momentum', type=float, default=0.9)
parser.add_argument('--weight-decay', type=float, default=5e-4)
# training configs
parser.add_argument('--resume', type=str, default='', metavar='PATH')
parser.add_argument('--evaluate', action='store_true',
help="evaluation only")
parser.add_argument('--epochs', type=int, default=50)
parser.add_argument('--T', type=float, default =1)# temperature for soft pooling
parser.add_argument('--lr_mult', type=float, default =1)# temperature for soft pooling
parser.add_argument('--step_size',type=int, default =100)
parser.add_argument('--dim', type=int, default =256)# temperature for soft pooling
parser.add_argument('--seed', type=int, default=1)
parser.add_argument('--print-freq', type=int, default=1)
# metric learning
parser.add_argument('--dist-metric', type=str, default='euclidean',
choices=['euclidean', 'kissme'])
# misc
working_dir = osp.dirname(osp.abspath(__file__))
parser.add_argument('--data-dir', type=str, metavar='PATH',
default=osp.join(working_dir, 'data'))
parser.add_argument('--logs-dir', type=str, metavar='PATH',
default=osp.join(working_dir, 'logs'))
main(parser.parse_args())